InGaP/GaAs双结太阳能电池顶基层厚度的光致发光和光反射探测

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Bahareh Seyedein Ardebili, Behnam Zeinalvand Farzin, Geun Hyeong Kim, Jong Su Kim, Sang Jun Lee
{"title":"InGaP/GaAs双结太阳能电池顶基层厚度的光致发光和光反射探测","authors":"S. Bahareh Seyedein Ardebili,&nbsp;Behnam Zeinalvand Farzin,&nbsp;Geun Hyeong Kim,&nbsp;Jong Su Kim,&nbsp;Sang Jun Lee","doi":"10.1007/s11082-025-08500-w","DOIUrl":null,"url":null,"abstract":"<div><p>InGaP/GaAs dual-junction solar cells are pivotal cell structures for advancing photovoltaic technology in multi-junction solar cell architecture. To evaluate how the top base layer thickness affects cell performance, we investigated the electrical and optical characteristics of two InGaP/GaAs dual-junction solar cell structures with top base layer thicknesses of 0.55 μm and 1 μm. Through electrical simulations and experimental techniques, including power- and temperature-dependent photoluminescence and room-temperature photoreflectance spectroscopies, as contactless techniques, we demonstrate the top base layer thickness’s significant impact on cell performance. The results show that increasing the top base layer thickness from 0.55 to 1 μm increases photoluminescence efficiency, decreases electron–phonon interaction strength, and reduces electron–hole pair entropy. It also reduces the electric field strength in the p-n junction and decreases the trapping time constants. These significant multi-faceted improvements in optical and electrical performance indicate the role of top base layer thickness in influencing optical and electrical properties, which can guide optimization in future solar cell designs. Specifically, the results highlight the importance of the electron–phonon interaction extracted from photoluminescence and the trapping time constants extracted from photoreflectance phase diagrams in characterizing solar cell structures.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence and photoreflectance probing of top base layer thickness in InGaP/GaAs dual-junction solar cells\",\"authors\":\"S. Bahareh Seyedein Ardebili,&nbsp;Behnam Zeinalvand Farzin,&nbsp;Geun Hyeong Kim,&nbsp;Jong Su Kim,&nbsp;Sang Jun Lee\",\"doi\":\"10.1007/s11082-025-08500-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>InGaP/GaAs dual-junction solar cells are pivotal cell structures for advancing photovoltaic technology in multi-junction solar cell architecture. To evaluate how the top base layer thickness affects cell performance, we investigated the electrical and optical characteristics of two InGaP/GaAs dual-junction solar cell structures with top base layer thicknesses of 0.55 μm and 1 μm. Through electrical simulations and experimental techniques, including power- and temperature-dependent photoluminescence and room-temperature photoreflectance spectroscopies, as contactless techniques, we demonstrate the top base layer thickness’s significant impact on cell performance. The results show that increasing the top base layer thickness from 0.55 to 1 μm increases photoluminescence efficiency, decreases electron–phonon interaction strength, and reduces electron–hole pair entropy. It also reduces the electric field strength in the p-n junction and decreases the trapping time constants. These significant multi-faceted improvements in optical and electrical performance indicate the role of top base layer thickness in influencing optical and electrical properties, which can guide optimization in future solar cell designs. Specifically, the results highlight the importance of the electron–phonon interaction extracted from photoluminescence and the trapping time constants extracted from photoreflectance phase diagrams in characterizing solar cell structures.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 11\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08500-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08500-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在多结太阳能电池结构中,InGaP/GaAs双结太阳能电池是推进光伏技术的关键电池结构。为了评估顶基层厚度对电池性能的影响,我们研究了顶基层厚度分别为0.55 μm和1 μm的两种InGaP/GaAs双结太阳能电池结构的电学和光学特性。通过电模拟和实验技术,包括功率和温度相关的光致发光和室温光反射光谱,作为非接触式技术,我们证明了顶层基础层厚度对电池性能的显著影响。结果表明,将顶层基材厚度从0.55 μm增加到1 μm可提高光致发光效率,降低电子-声子相互作用强度,降低电子-空穴对熵。它还降低了pn结的电场强度和捕获时间常数。这些光学和电学性能的显著改善表明,顶层基层厚度对光学和电学性能的影响,可以指导未来太阳能电池设计的优化。具体来说,这些结果强调了从光致发光中提取的电子-声子相互作用和从光反射相图中提取的捕获时间常数在表征太阳能电池结构中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photoluminescence and photoreflectance probing of top base layer thickness in InGaP/GaAs dual-junction solar cells

InGaP/GaAs dual-junction solar cells are pivotal cell structures for advancing photovoltaic technology in multi-junction solar cell architecture. To evaluate how the top base layer thickness affects cell performance, we investigated the electrical and optical characteristics of two InGaP/GaAs dual-junction solar cell structures with top base layer thicknesses of 0.55 μm and 1 μm. Through electrical simulations and experimental techniques, including power- and temperature-dependent photoluminescence and room-temperature photoreflectance spectroscopies, as contactless techniques, we demonstrate the top base layer thickness’s significant impact on cell performance. The results show that increasing the top base layer thickness from 0.55 to 1 μm increases photoluminescence efficiency, decreases electron–phonon interaction strength, and reduces electron–hole pair entropy. It also reduces the electric field strength in the p-n junction and decreases the trapping time constants. These significant multi-faceted improvements in optical and electrical performance indicate the role of top base layer thickness in influencing optical and electrical properties, which can guide optimization in future solar cell designs. Specifically, the results highlight the importance of the electron–phonon interaction extracted from photoluminescence and the trapping time constants extracted from photoreflectance phase diagrams in characterizing solar cell structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信