Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin
{"title":"Selenium Removal from Wastewater by Microbial Transformation and Volatilization.","authors":"Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin","doi":"10.1007/10_2023_242","DOIUrl":"https://doi.org/10.1007/10_2023_242","url":null,"abstract":"<p><p>Selenium (Se) is a naturally occurring trace element that is nutritionally essential for humans and animals, but becomes toxic at high concentrations. This laboratory study explored the role of microbes in Se removal from contaminated wastewater via biological transformation and volatilization processes. Microbes could immobilize water-soluble selenate (SeO<sub>4</sub><sup>2-</sup>) and selenite (SeO<sub>3</sub><sup>2-</sup>) to water-insoluble elemental Se (Se<sup>0</sup>) and transform Se into volatile Se compounds found in the atmosphere. Results of this laboratory study showed that Bacillus cereus, a bacterial strain isolated from wheat straw and biosolid-WTR-sand substrates showed a significant biotransformation ability of reducing selenate and selenite to elemental Se and forming volatile Se organic compounds in wastewater. Overall, microbial Se chemical reduction, methylation, and volatilization are important processes in bioremediation of Se-contaminated wastewater.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.","authors":"Zach Watkins, Adam McHenry, Jason Heikenfeld","doi":"10.1007/10_2023_238","DOIUrl":"10.1007/10_2023_238","url":null,"abstract":"<p><p>Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"223-282"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing.","authors":"Alejandro Chamorro, Marianna Rossetti, Neda Bagheri, Alessandro Porchetta","doi":"10.1007/10_2023_235","DOIUrl":"10.1007/10_2023_235","url":null,"abstract":"<p><p>The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"71-106"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytoextraction Options.","authors":"Alla Samarska, Oliver Wiche","doi":"10.1007/10_2024_263","DOIUrl":"10.1007/10_2024_263","url":null,"abstract":"<p><p>Wastewaters often contain an array of economically valuable elements, including elements considered critical raw materials and elements for fertilizer production. Plant-based treatment approaches in constructed wetlands, open ponds, or hydroponic systems represent an eco-friendly and economical way to remove potentially toxic metal(loid)s from wastewater (phytoextraction). Concomitantly, the element-enriched biomass represents an important secondary raw material for bioenergy generation and the recovery of raw materials from the harvested plant biomass (phytomining). At present, phytoextraction in constructed wetlands is still considered a nascent technology that still requires more fundamental and applied research before it can be commercially applied. This chapter discusses the different roles of plants in constructed wetlands during the phytoextraction of economically valuable elements. It sheds light on the utilization of plant biomass in the recovery of raw materials from wastewater streams. Here, we consider phytoextraction of the commonly studied water pollutants (N, P, Zn, Cd, Pb, Cr) and expand this concept to a group of rather exotic metal(loid)s (Ge, REE, PGM) highlighting the role of phytoextraction in the face of climate change and finite resources of high-tech metals.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"181-232"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube
{"title":"Resource-Efficient Use of Residues from Medicinal and Aromatic Plants for Production of Secondary Plant Metabolites.","authors":"Sibylle Kümmritz, Nanina Tron, Martin Tegtmeier, Axel Schmidt, Jochen Strube","doi":"10.1007/10_2024_250","DOIUrl":"10.1007/10_2024_250","url":null,"abstract":"<p><p>Although people's interest in green and healthy plant-based products and natural active ingredients in the cosmetic, pharmaceutical, and food industries is steadily increasing, medicinal and aromatic plants (MAPs) represent a niche crop type.It is possible to increase cultivation and sales of MAPs, by utilizing plant components that are usually discarded. This chapter provides an overview of studies concerning material flows and methods used for sustainable production of valuable metabolites from MAPs between 2018 and 2023. Additionally, it describes new developments and strategies for extraction and isolation, as well as innovative applications. In order to use these valuable resources almost completely, a systematic recycling of the plant material is recommended. This would be a profitable way to increase sustainability in the cultivation and usage of MAPs and provide new opportunities for extraction in plant science.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"145-168"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production.","authors":"Ilian Badjakov, Ivayla Dincheva, Radka Vrancheva, Vasil Georgiev, Atanas Pavlov","doi":"10.1007/10_2023_245","DOIUrl":"10.1007/10_2023_245","url":null,"abstract":"<p><p>Pentacyclic triterpenoids are a diverse subclass of naturally occurring terpenes with various biological activities and applications. These compounds are broadly distributed in natural plant resources, but their low abundance and the slow growth cycle of plants pose challenges to their extraction and production. The biosynthesis of pentacyclic triterpenoids occurs through two main pathways, the mevalonic acid (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which involve several enzymes and modifications. Plant in vitro cultures, including elicited and hairy root cultures, have emerged as an effective and sustainable system for pentacyclic triterpenoid production, circumventing the limitations associated with natural plant resources. Bioreactor systems and controlling key parameters, such as media composition, temperature, light quality, and elicitor treatments, have been optimized to enhance the production and characterization of specific pentacyclic triterpenoids. These systems offer a promising bioprocessing tool for producing pentacyclic triterpenoids characterized by a low carbon footprint and a sustainable source of these compounds for various industrial applications.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"17-49"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael
{"title":"Progress on the Electrochemical Sensing of Illicit Drugs.","authors":"Robin Van Echelpoel, Florine Joosten, Marc Parrilla, Karolien De Wael","doi":"10.1007/10_2023_239","DOIUrl":"10.1007/10_2023_239","url":null,"abstract":"<p><p>Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"413-442"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber
{"title":"Co-cultures from Plants and Cyanobacteria: A New Way for Production Systems in Agriculture and Bioprocess Engineering.","authors":"D Strieth, J Kollmen, J Stiefelmaier, A Mehring, R Ulber","doi":"10.1007/10_2023_247","DOIUrl":"10.1007/10_2023_247","url":null,"abstract":"<p><p>Due to the global increase in the world population, it is not possible to ensure a sufficient food supply without additional nitrogen input into the soil. About 30-50% of agricultural yields are due to the use of chemical fertilizers in modern times. However, overfertilization threatens biodiversity, such as nitrogen-loving, fast-growing species overgrow others. The production of artificial fertilizers produces nitrogen oxides, which act as greenhouse gases. In addition, overfertilization of fields also releases ammonia, which damages surface waters through acidification and eutrophication. Diazotrophic cyanobacteria, which usually form a natural, stable biofilm, can fix nitrogen from the atmosphere and release it into the environment. Thus, they could provide an alternative to artificial fertilizers. In addition to this, biofilms stabilize soils and thus protect against soil erosion and desiccation. This chapter deals with the potential of cyanobacteria as the use of natural fertilizer is described. Possible partners such as plants and callus cells and the advantages of artificial co-cultivation will be discussed later. In addition, different cultivation systems for studying artificial co-cultures will be presented. Finally, the potential of artificial co-cultures in the agar industry will be discussed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"83-117"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological Iron Removal and Recovery from Water and Wastewater.","authors":"Anna Henriikka Kaksonen, Eberhard Janneck","doi":"10.1007/10_2024_255","DOIUrl":"10.1007/10_2024_255","url":null,"abstract":"<p><p>Iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"31-88"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solid-State Nanopores for Biomolecular Analysis and Detection.","authors":"Annina Stuber, Tilman Schlotter, Julian Hengsteler, Nako Nakatsuka","doi":"10.1007/10_2023_240","DOIUrl":"10.1007/10_2023_240","url":null,"abstract":"<p><p>Advances in nanopore technology and data processing have rendered DNA sequencing highly accessible, unlocking a new realm of biotechnological opportunities. Commercially available nanopores for DNA sequencing are of biological origin and have certain disadvantages such as having specific environmental requirements to retain functionality. Solid-state nanopores have received increased attention as modular systems with controllable characteristics that enable deployment in non-physiological milieu. Thus, we focus our review on summarizing recent innovations in the field of solid-state nanopores to envision the future of this technology for biomolecular analysis and detection. We begin by introducing the physical aspects of nanopore measurements ranging from interfacial interactions at pore and electrode surfaces to mass transport of analytes and data analysis of recorded signals. Then, developments in nanopore fabrication and post-processing techniques with the pros and cons of different methodologies are examined. Subsequently, progress to facilitate DNA sequencing using solid-state nanopores is described to assess how this platform is evolving to tackle the more complex challenge of protein sequencing. Beyond sequencing, we highlight the recent developments in biosensing of nucleic acids, proteins, and sugars and conclude with an outlook on the frontiers of nanopore technologies.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"283-316"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}