Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar
{"title":"Correction to: Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2024_258","DOIUrl":"10.1007/10_2024_258","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"241"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jan den Boer, Emilia den Boer
{"title":"Food and Forest Industry Waste Reuse Using Mixed Microflora.","authors":"Elias Hakalehto, Anneli Heitto, Frank Adusei-Mensah, Ari Jääskeläinen, Reino Laatikainen, Jukka Kivelä, Erik Dahlquist, Jan den Boer, Emilia den Boer","doi":"10.1007/10_2024_268","DOIUrl":"10.1007/10_2024_268","url":null,"abstract":"<p><p>Organic raw materials are the renewable sources of substrates for our industries and for our microbial communities. As industrial, agricultural or forestry side streams, they are usually affordable raw materials if the process entities, equipment and protocols are properly designed. The microbial communities that are used as biocatalysts take care of the process development together with the process team. Moreover, they constitute or shape the process to resemble the natural bioprocess as it takes place or occurs in nature and thus make it \"Industry Like Nature®\" - type of endeavor. As an ultimate result, we could make our industries increasingly 100% sustainable with the help of microbes. In case of food or forest industry side streams, this means fossil-free production of valuable chemicals, food and feed components, energy and gases, and soil improvement agents or organic fertilizers. The so-called \"Finnoflag biorefinery\" idea has been tested in many cases together with domestic and international colleagues and industries. In here, we attempt to share the basic thinking.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"189-211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial Biorefinery Education for Professionals.","authors":"Ari Jääskeläinen, Elias Hakalehto","doi":"10.1007/10_2024_259","DOIUrl":"10.1007/10_2024_259","url":null,"abstract":"<p><p>Microbial strains, communities, and enzymes process side-streams into valuable products in a microbiological biorefinery. Proactive engineering and manufacturing of related bioreactors and other equipment is crucial. Production processes should be engineered in a seamless collaboration, so that the equipment optimally supports the biorefinery's function. This chapter presents various ways to educate microbiological biorefinery principles and operations for professionals. This education can occur in the classroom and hands-on, in biorefinery pilots, laboratories or purification plants.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"107-123"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Rovira-Alsina, Meritxell Romans-Casas, Elisabet Perona-Vico, Alba Ceballos-Escalera, M Dolors Balaguer, Lluís Bañeras, Sebastià Puig
{"title":"Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges.","authors":"Laura Rovira-Alsina, Meritxell Romans-Casas, Elisabet Perona-Vico, Alba Ceballos-Escalera, M Dolors Balaguer, Lluís Bañeras, Sebastià Puig","doi":"10.1007/10_2024_273","DOIUrl":"https://doi.org/10.1007/10_2024_273","url":null,"abstract":"<p><p>Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba
{"title":"Agricultural Wastes to Value-Added Products: Economic and Environmental Perspectives for Waste Conversion.","authors":"Stephen Oyedeji, Nikita Patel, Ramar Krishnamurthy, Paul Ojo Fatoba","doi":"10.1007/10_2024_274","DOIUrl":"https://doi.org/10.1007/10_2024_274","url":null,"abstract":"<p><p>The conversion of agricultural wastes to value-added products has emerged as a pivotal strategy in fostering economic transformation. This chapter explores the transformative potential of converting agricultural residues into valued commodities that contribute to sustainability and economic growth. Agricultural wastes, often considered environmental liabilities, possess untapped benefits with great economic value. By employing innovative technologies, these wastes can be converted into a range of value-added products, such as substrates for agricultural production, biofuels, organic fertilizers, natural dyes, pharmaceuticals, and packaging materials. This approach not only mitigates the environmental impact of waste disposal but also provides new revenue streams for farmers, entrepreneurs and governments. In the economic landscape, the creation of value-added products from agricultural wastes serves as a catalyst for job creation, income generation, and rural development. Additionally, the development of a value chain around agricultural waste-derived products strengthens the resilience of the agricultural sector while diversifying the sources of income for farmers and reducing their dependence on major crops as income source. It also fosters innovation by encouraging the development of new technologies and industrial processes for efficient waste utilization and creation of novel products with diverse applications. From the environmental perspective, the conversion of agricultural waste to valuable products reduces environmental pollution, mitigates climate change, and improves the quality of life. The production of biofuels from agricultural residues has the potential to address energy security concerns, provide alternative and renewable energy sources, and allow for energy sufficiency. This chapter exposes the hidden economic potentials in agricultural wastes for farmers, entrepreneurs, policymakers, and government to explore. The transformation of agricultural wastes into value-added products if fully harnessed will play a critical role in the economic transformation of many nations across the globe while addressing the environmental challenges that come with waste management and industrialization.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria.","authors":"Lukas Kneuer, René Wurst, Johannes Gescher","doi":"10.1007/10_2024_272","DOIUrl":"https://doi.org/10.1007/10_2024_272","url":null,"abstract":"<p><p>What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maurice Hädrich, Clarissa Schulze, Josef Hoff, Bastian Blombach
{"title":"Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium.","authors":"Maurice Hädrich, Clarissa Schulze, Josef Hoff, Bastian Blombach","doi":"10.1007/10_2024_271","DOIUrl":"https://doi.org/10.1007/10_2024_271","url":null,"abstract":"<p><p>The fast growth accompanied with high substrate consumption rates and a versatile metabolism paved the way to exploit Vibrio natriegens as unconventional host for biotechnological applications. Meanwhile, a wealth of knowledge on the physiology, the metabolism, and the regulation in this halophilic marine bacterium has been gathered. Sophisticated genetic engineering tools and metabolic models are available and have been applied to engineer production strains and first chassis variants of V. natriegens. In this review, we update the current knowledge on the physiology and the progress in the development of synthetic biology tools and provide an overview of recent advances in metabolic engineering of this promising host. We further discuss future challenges to enhance the application range of V. natriegens.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Casey, Laura Diaz-Garcia, Mincen Yu, Kang Lan Tee, Tuck Seng Wong
{"title":"From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator.","authors":"Daniel Casey, Laura Diaz-Garcia, Mincen Yu, Kang Lan Tee, Tuck Seng Wong","doi":"10.1007/10_2024_269","DOIUrl":"https://doi.org/10.1007/10_2024_269","url":null,"abstract":"<p><p>The expanding field of synthetic biology requires diversification of microbial chassis to expedite the transition from a fossil fuel-dependent economy to a sustainable bioeconomy. Relying exclusively on established model organisms such as Escherichia coli and Saccharomyces cerevisiae may not suffice to drive the profound advancements needed in biotechnology. In this context, Cupriavidus necator, an extraordinarily versatile microorganism, has emerged as a potential catalyst for transformative breakthroughs in industrial biomanufacturing. This comprehensive book chapter offers an in-depth review of the remarkable technological progress achieved by C. necator in the past decade, with a specific focus on the fields of molecular biology tools, metabolic engineering, and innovative fermentation strategies. Through this exploration, we aim to shed light on the pivotal role of C. necator in shaping the future of sustainable bioprocessing and bioproduct development.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methanothermobacter thermautotrophicus and Alternative Methanogens: Archaea-Based Production.","authors":"Lucas Mühling, Tina Baur, Bastian Molitor","doi":"10.1007/10_2024_270","DOIUrl":"https://doi.org/10.1007/10_2024_270","url":null,"abstract":"<p><p>Methanogenic archaea convert bacterial fermentation intermediates from the decomposition of organic material into methane. This process has relevance in the global carbon cycle and finds application in anthropogenic processes, such as wastewater treatment and anaerobic digestion. Furthermore, methanogenic archaea that utilize hydrogen and carbon dioxide as substrates are being employed as biocatalysts for the biomethanation step of power-to-gas technology. This technology converts hydrogen from water electrolysis and carbon dioxide into renewable natural gas (i.e., methane). The application of methanogenic archaea in bioproduction beyond methane has been demonstrated in only a few instances and is limited to mesophilic species for which genetic engineering tools are available. In this chapter, we discuss recent developments for those existing genetically tractable systems and the inclusion of novel genetic tools for thermophilic methanogenic species. We then give an overview of recombinant bioproduction with mesophilic methanogenic archaea and thermophilic non-methanogenic microbes. This is the basis for discussing putative products with thermophilic methanogenic archaea, specifically the species Methanothermobacter thermautotrophicus. We give estimates of potential conversion efficiencies for those putative products based on a genome-scale metabolic model for M. thermautotrophicus.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.","authors":"Zach Watkins, Adam McHenry, Jason Heikenfeld","doi":"10.1007/10_2023_238","DOIUrl":"10.1007/10_2023_238","url":null,"abstract":"<p><p>Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"223-282"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}