Biosurfactants, Polyhydroxyalkanoates, and Other Added-Value Products from Wastewater Electro-bioremediation: A New Biorefinery Concept.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
Argyro Tsipa, Constantina K Varnava, Rosa Anna Nastro, Ioannis Ieropoulos
{"title":"Biosurfactants, Polyhydroxyalkanoates, and Other Added-Value Products from Wastewater Electro-bioremediation: A New Biorefinery Concept.","authors":"Argyro Tsipa, Constantina K Varnava, Rosa Anna Nastro, Ioannis Ieropoulos","doi":"10.1007/10_2025_279","DOIUrl":null,"url":null,"abstract":"<p><p>Electro-bioremediation of wastewater is a novel, nature-based solution towards clean water, based on microbial electrochemical technologies (METs). Electro-bioremediation technologies for wastewater treatment, except enhanced bioremediation results and renewable energy generation, offer an unlocked opportunity for harvesting by-products and using them in other applications. This concept contributes to circularity, sustainability, and environmental compatibility, mitigating the impact of climate change. In addition, wastewater valorization and, thus, water resilience are possible thereby leading to protection of water resources. Compounds and metabolites naturally synthesized by the microorganisms involved in the wastewater electro-assisted biodegradation, can result in the enhancement of both extracellular electron transfer (EET) and bioremediation. Such microbial products are added-value, natural, non-toxic and biodegradable such as biosurfactants (BSFs) and polyhydroxyalkanoates (PHAs). In this chapter, the effect of the presence of BSFs and PHAs in MET during electro-bioremediation, as well as when fed with conventional substrates, are exhaustively evaluated. The significance of BSFs even when they are added exogenously is also examined. The major categories of by-products biosynthesis including organic acids, biopolymers, recovered heavy metals and phenazines such as pyocyanin during electro-bioremediation processes are also discussed. Consequently, a future direction in wastewater electro-bioremediation is proposed.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2025_279","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Electro-bioremediation of wastewater is a novel, nature-based solution towards clean water, based on microbial electrochemical technologies (METs). Electro-bioremediation technologies for wastewater treatment, except enhanced bioremediation results and renewable energy generation, offer an unlocked opportunity for harvesting by-products and using them in other applications. This concept contributes to circularity, sustainability, and environmental compatibility, mitigating the impact of climate change. In addition, wastewater valorization and, thus, water resilience are possible thereby leading to protection of water resources. Compounds and metabolites naturally synthesized by the microorganisms involved in the wastewater electro-assisted biodegradation, can result in the enhancement of both extracellular electron transfer (EET) and bioremediation. Such microbial products are added-value, natural, non-toxic and biodegradable such as biosurfactants (BSFs) and polyhydroxyalkanoates (PHAs). In this chapter, the effect of the presence of BSFs and PHAs in MET during electro-bioremediation, as well as when fed with conventional substrates, are exhaustively evaluated. The significance of BSFs even when they are added exogenously is also examined. The major categories of by-products biosynthesis including organic acids, biopolymers, recovered heavy metals and phenazines such as pyocyanin during electro-bioremediation processes are also discussed. Consequently, a future direction in wastewater electro-bioremediation is proposed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信