Beatriz Antolín Puebla, Marisol Vega Alegre, Silvia Bolado Rodríguez, Pedro A García Encina
{"title":"Microalgae: A Biological Tool for Removal and Recovery of Potentially Toxic Elements in Wastewater Treatment Photobioreactors.","authors":"Beatriz Antolín Puebla, Marisol Vega Alegre, Silvia Bolado Rodríguez, Pedro A García Encina","doi":"10.1007/10_2024_262","DOIUrl":"https://doi.org/10.1007/10_2024_262","url":null,"abstract":"<p><p>Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO<sub>2</sub>, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological Iron Removal and Recovery from Water and Wastewater.","authors":"Anna Henriikka Kaksonen, Eberhard Janneck","doi":"10.1007/10_2024_255","DOIUrl":"https://doi.org/10.1007/10_2024_255","url":null,"abstract":"<p><p>Iron is a common contaminant in source water and wastewater. The mining and metallurgical industries in particular can produce and discharge large quantities of wastewater with high iron concentrations. Due to the harmful effects of iron on organisms and infrastructure, efficient technologies for iron removal from water and wastewater are needed. On the other hand, iron is a valuable commodity for a wide range of applications. Microorganisms can facilitate iron removal and recovery through aerobic and anaerobic processes. The most commonly utilized microbes include iron oxidizers that facilitate iron precipitation as jarosites, schwertmannite, ferrihydrite, goethite, and scorodite, and sulfate reducers which produce hydrogen sulfide that precipitates iron as sulfides. Biological iron removal has been explored in various suspended cell and biofilm-based bioreactors that can be configured in parallel or series and integrated with precipitation and settling units for an effective flow sheet. This chapter reviews principles for biological iron removal and recovery, the microorganisms involved, reactor types, patents and examples of laboratory- and pilot-scale studies, and full-scale implementations of the technology.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar
{"title":"Correction to: Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2024_258","DOIUrl":"https://doi.org/10.1007/10_2024_258","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Sánchez-España, Carmen Falagán, Jutta Meier
{"title":"Aluminum Biorecovery from Wastewaters.","authors":"Javier Sánchez-España, Carmen Falagán, Jutta Meier","doi":"10.1007/10_2024_256","DOIUrl":"https://doi.org/10.1007/10_2024_256","url":null,"abstract":"<p><p>Aluminum biorecovery is still at an early stage. However, a significant number of studies showing promising results already exist, although they have revealed problems that need to be solved so aluminum biorecovery can have a wider application and industrial upscaling. In this chapter, we revise the existing knowledge on the biorecovery of aluminum from different sources. We discuss the design, overall performance, advantages, technical problems, limitations, and possible future directions of the different biotechnological methods that have been reported so far. Aluminum biorecovery from different sources has been studied (i.e., solid wastes and primary sources of variable origin, wastewater with low concentrations of dissolved aluminum at pH-neutral or weakly acidic conditions, and acidic mine waters with high concentrations of dissolved aluminum and other metal(loid)s) and has shown that the process efficiency strongly depends on factors such as (1) the physicochemical properties of the source materials, (2) the physiological features of the used (micro)organisms, or (3) the biochemical process used. Bioleaching of aluminum from low-grade bauxite or red mud can much be achieved by a diverse range of organisms (e.g., fungi, bacteria) with different metabolic rates. Biorecovery of aluminum from wastewaters, e.g., domestic wastewater, acidic mine water, has also been accomplished by the use of microalgae, cyanobacteria (for domestic wastewater) or by sulfate-reducing bacteria (acidic mine water). In most of the cases, the drawback of the process is the requirement of controlled conditions which involves a continuous supply of oxygen or maintenance of anoxic conditions which make aluminum biorecovery challenging in terms of process design and economical value. Further studies should focus on studying these processes in comparison or in combination to existing economical processes to assess their feasibility.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precious Metal Recovery from Wastewater Using Bio-Based Techniques.","authors":"Sehliselo Ndlovu, Anil Kumar","doi":"10.1007/10_2024_257","DOIUrl":"https://doi.org/10.1007/10_2024_257","url":null,"abstract":"<p><p>The recovery of metals from waste material has been on the increase in the past few years due to a number of reasons such as supporting the diversification of metal supply resources. In addition, the alternative use of the waste material for metal recovery can add to the main production line, boosting production throughput and profitability thus, allowing companies to sustain their activities during times of low commodity prices. While there has been a lot of research and interest in the recovery of precious metals such as platinum group metals (PGMs), Au, and Ag from solid waste material, there has been limited focus on the recovery of these value metals from wastewater. This is mostly related to challenges associated with finding cost-effective technologies that can recover these metals from solutions of low metal concentrations. In recent years, bio-based technologies have, however, become established as potential alternatives to traditional techniques in the treatment of wastewater due to their ability to recover metals from solutions of low concentrations. While wastewater might be characterized by some significant value metal content, it also contains other components that have potential economic value if recovered or converted to by-products. Such an approach may not only provide an opportunity for extraction of metal resources from wastewater but also contributes toward the circular economy. This chapter presents insights into precious metal recovery from wastewater using bio-based technologies, compares such an approach to the traditional techniques, explores the recovery of other value-added products and finally considers some of the challenges associated with the large-scale application of the bio-based technologies.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: The Human Gut Microbiota: A Dynamic Biologic Factory.","authors":"Alireza Minagar, Rabih Jabbour","doi":"10.1007/10_2024_253","DOIUrl":"10.1007/10_2024_253","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar
{"title":"Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2023_248","DOIUrl":"10.1007/10_2023_248","url":null,"abstract":"<p><p>Mixed culture cultivation is well renowned for industrial applications due to its technological and economic benefits in bioprocess, food processing, and pharmaceutical industries. A mixed consortium encompasses to achieve growth in unsterile conditions, robustness to environmental stresses, perform difficult functions, show better substrate utilization, and increase productivity. Hence, mixed cultures are being valorized currently and has also augmented our understanding of microbial activities in communities. This chapter covers a wide range of discussion on recent improvements in mixed culture cultivation for microbial bioprocessing and multifarious applications in different areas. The history of microbial culture, microbial metabolism in mixed culture, biosynthetic pathway studies, isolation and identification of strains, along with the types of microbial interactions involved during their production and propagation, are meticulously detailed in the current chapter. Besides, parameters for evaluating mixed culture performance, large-scale production, and challenges associated with it are also discussed vividly. Microbial community, characteristics of single and mixed culture fermentation, and microbe-microbe interactions in mixed cultures have been summarized comprehensively. Lastly, various challenges and opportunities in the area of microbial mixed culture that are obligatory to improve the current knowledge of microbial bioprocesses are projected.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Human Gut Microbiota: A Dynamic Biologic Factory.","authors":"Alireza Minagar, Rabih Jabbour","doi":"10.1007/10_2023_243","DOIUrl":"10.1007/10_2023_243","url":null,"abstract":"<p><p>The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term \"gut microbiota\" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term \"microbiome\" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin
{"title":"Selenium Removal from Wastewater by Microbial Transformation and Volatilization.","authors":"Tochukwu Ekwonna, Olusegun Akindeju, Brianna Amos, Zhi-Qing Lin","doi":"10.1007/10_2023_242","DOIUrl":"https://doi.org/10.1007/10_2023_242","url":null,"abstract":"<p><p>Selenium (Se) is a naturally occurring trace element that is nutritionally essential for humans and animals, but becomes toxic at high concentrations. This laboratory study explored the role of microbes in Se removal from contaminated wastewater via biological transformation and volatilization processes. Microbes could immobilize water-soluble selenate (SeO<sub>4</sub><sup>2-</sup>) and selenite (SeO<sub>3</sub><sup>2-</sup>) to water-insoluble elemental Se (Se<sup>0</sup>) and transform Se into volatile Se compounds found in the atmosphere. Results of this laboratory study showed that Bacillus cereus, a bacterial strain isolated from wheat straw and biosolid-WTR-sand substrates showed a significant biotransformation ability of reducing selenate and selenite to elemental Se and forming volatile Se organic compounds in wastewater. Overall, microbial Se chemical reduction, methylation, and volatilization are important processes in bioremediation of Se-contaminated wastewater.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing.","authors":"Zach Watkins, Adam McHenry, Jason Heikenfeld","doi":"10.1007/10_2023_238","DOIUrl":"10.1007/10_2023_238","url":null,"abstract":"<p><p>Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"223-282"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}