Advances in biochemical engineering/biotechnology最新文献

筛选
英文 中文
Mixed Culture Cultivation in Microbial Bioprocesses. 微生物生物工艺中的混合培养。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2023_248
Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar
{"title":"Mixed Culture Cultivation in Microbial Bioprocesses.","authors":"Manisha Khedkar, Dattatray Bedade, Rekha S Singhal, Sandip B Bankar","doi":"10.1007/10_2023_248","DOIUrl":"10.1007/10_2023_248","url":null,"abstract":"<p><p>Mixed culture cultivation is well renowned for industrial applications due to its technological and economic benefits in bioprocess, food processing, and pharmaceutical industries. A mixed consortium encompasses to achieve growth in unsterile conditions, robustness to environmental stresses, perform difficult functions, show better substrate utilization, and increase productivity. Hence, mixed cultures are being valorized currently and has also augmented our understanding of microbial activities in communities. This chapter covers a wide range of discussion on recent improvements in mixed culture cultivation for microbial bioprocessing and multifarious applications in different areas. The history of microbial culture, microbial metabolism in mixed culture, biosynthetic pathway studies, isolation and identification of strains, along with the types of microbial interactions involved during their production and propagation, are meticulously detailed in the current chapter. Besides, parameters for evaluating mixed culture performance, large-scale production, and challenges associated with it are also discussed vividly. Microbial community, characteristics of single and mixed culture fermentation, and microbe-microbe interactions in mixed cultures have been summarized comprehensively. Lastly, various challenges and opportunities in the area of microbial mixed culture that are obligatory to improve the current knowledge of microbial bioprocesses are projected.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"9-69"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Upgrading of Products from Finnoflag Bio-refinery Pilot in Tampere. 坦佩雷 Finnoflag 生物精炼厂试点产品升级调查。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_261
Erik Dahlquist, Eva Thorin, Aubrey Shenk, Sebastian Schwede, Chaudhary Awais Salman, Elias Hakalehto
{"title":"Investigation of Upgrading of Products from Finnoflag Bio-refinery Pilot in Tampere.","authors":"Erik Dahlquist, Eva Thorin, Aubrey Shenk, Sebastian Schwede, Chaudhary Awais Salman, Elias Hakalehto","doi":"10.1007/10_2024_261","DOIUrl":"10.1007/10_2024_261","url":null,"abstract":"<p><p>In this study calculation over material and energy balances for bio-refinery product upgrading using membrane filtration (MF, UF, and RO), distillation, and ion-exchanger has been performed. Tests have been made with UF filtration in a pilot plant, separation tests made at lab with ion-exchanger and simulation using ASPEN plus simulator for distillation. Rough economic analysis has been made for the different solutions/techniques.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"213-240"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymes for Biomass Pretreatment: A Comprehensive Review. 生物质预处理用酶研究综述
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_275
Runze Pan, Jingxiang Sun, Fengxue Xin, Wankui Jiang, Min Jiang
{"title":"Enzymes for Biomass Pretreatment: A Comprehensive Review.","authors":"Runze Pan, Jingxiang Sun, Fengxue Xin, Wankui Jiang, Min Jiang","doi":"10.1007/10_2025_275","DOIUrl":"10.1007/10_2025_275","url":null,"abstract":"<p><p>Biomass pretreatment plays a crucial role in the conversion of lignocellulosic biowaste materials into valuable biofuels and biochemicals. Enzymatic pretreatment, in particular, has gained significant attention due to its eco-friendly nature and efficiency in breaking down complex biomass structures. This comprehensive review aims to provide an overview of enzymes used in biomass pretreatment, including cellulases, hemicellulases, ligninases, and their applications in enhancing the efficiency of biomass conversion processes. The review also discusses recent advancements, challenges, and future prospects in the field of enzymatic biomass pretreatment.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"99-117"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable Approaches in Viticulture: From Wastes and Side Streams to High-Value Products. 葡萄栽培的可持续发展途径:从废料和侧流到高价值产品。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_281
Niël van Wyk, Claudia Borgmeier, Alice Kleber, Esther M Gabor
{"title":"Sustainable Approaches in Viticulture: From Wastes and Side Streams to High-Value Products.","authors":"Niël van Wyk, Claudia Borgmeier, Alice Kleber, Esther M Gabor","doi":"10.1007/10_2025_281","DOIUrl":"10.1007/10_2025_281","url":null,"abstract":"<p><p>In the context of climate change, resource scarcity, and a growing global population, sustainable processes and the efficient use of raw materials are imperative. Developing best practices to guide the transition toward a circular economy with minimized waste is essential. Agricultural processes offer inspiration, as they traditionally emphasize the utilization of all parts of cultivated plants. Today, however, there is a pressing need to go beyond basic utilization and focus on the upcycling and valorization of agricultural side streams into high-value products. This chapter examines the wine and grape industry, which generates substantial volumes of side streams, including grape pomace, seeds, stems, and wine lees. In recent years, these material streams have attracted attention for their potential as raw materials rich in bioactive compounds - such as diverse polyphenols, dietary fibers, and organic acids - that can be applied across various sectors, including food, cosmetics, pharmaceuticals, and bioenergy. Key methodologies such as extraction, fermentation, and bioconversion are discussed as pathways to recover and enhance these compounds. Case studies of successful valorization initiatives are presented, demonstrating practical applications of side streams for high-value product creation. An example is the BMBF-funded project \"Sustainable Beverages\" focusing on the development of fermented drinks made from vine leaves that can be offered as a non-alcoholic alternative to wine. By providing an overview of the current research and technologies in wine waste valorization, this chapter serves as a valuable resource for academics, industry professionals, and policymakers seeking to advance sustainable practices within the wine sector. Ultimately, the upcycling of wine industry residues not only reduces environmental impact but also creates new revenue opportunities, driving innovation and sustainability in the industry.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"151-184"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143951854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Valorization of Agricultural Residues to Valuable Products: A Circular Bioeconomy Approach. 修正:农业残留物对有价值产品的增值:循环生物经济方法。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_286
Stefan Shilev, Ivelina Neykova, Slaveya Petrova
{"title":"Correction to: Valorization of Agricultural Residues to Valuable Products: A Circular Bioeconomy Approach.","authors":"Stefan Shilev, Ivelina Neykova, Slaveya Petrova","doi":"10.1007/10_2025_286","DOIUrl":"10.1007/10_2025_286","url":null,"abstract":"","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"C1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144726359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed Strain Fermentation and Metabonomics for Solving Issues of Bioproduction. 混合菌种发酵和代谢经济学解决生物生产问题。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_266
Elias Hakalehto, Reino Laatikainen, Jouni Pesola, Erik Dahlquist, Jeremy Everett
{"title":"Mixed Strain Fermentation and Metabonomics for Solving Issues of Bioproduction.","authors":"Elias Hakalehto, Reino Laatikainen, Jouni Pesola, Erik Dahlquist, Jeremy Everett","doi":"10.1007/10_2024_266","DOIUrl":"10.1007/10_2024_266","url":null,"abstract":"<p><p>In the research of mixed microbial cultures, the numbers and identifications of individual strains are often only partially unknown. Their metabolic capabilities are also not wholly predictable especially if the joint potential is to be understood. In these kinds of situations, deeper insight into the variable microbial communities cannot be obtained by genetic analysis only. Even more critical than the taxonomic aspect is usually the functional metabolic outcome of the mixed flora in question. The results from such studies as NMR (nucleic magnetic resonance) give a precise view from versatile angles into the biochemical activities during the multiparametric metabolic responses of the microflora as a whole.Originally, metabonomics was mainly used for the pathophysiological research of various microbes or for recording the genetic or biochemical modifications of mixed microflora. This approach offers a tool for monitoring changes in microscopic or otherwise confined ecosystems or at multiple locations from which representative specimens are difficult to obtain. It also offers repeatability in various processes. In microbiological studies, the research group can attain overall views on variable populations and their alterations in time and space.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"71-89"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures. 利用未定义混合培养物在生物过程中生产新型能源气体。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_267
Elias Hakalehto, Ari Jääskeläinen
{"title":"Production of Novel Energy Gases in Bioprocesses Using Undefined Mixed Cultures.","authors":"Elias Hakalehto, Ari Jääskeläinen","doi":"10.1007/10_2024_267","DOIUrl":"10.1007/10_2024_267","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Three phases of matter intermingle in various environments. The phenomena behind these fluctuations provide microbial cultures with beneficial interphase on the borderlines. Correspondingly, a bioreactor broth usually consists of a liquid phase but also contains solid particles, gas bubbles, technical surfaces, and other niches, both on a visible scale and microscopically. The diffusion limitation in the suspension is a remarkable hindrance to the reaction sequence during production. It must be overcome technically. Gas flow into the reactor could serve this purpose, and the outgoing stream or bubbling contains volatile products. The various mixing elements or gas flows should be moderated if shear forces disturb the cell growth, biochemical production, enzymatic activity, or any other crucial biological or physicochemical parameters. The focus is to optimize energy production in the form of liberated gases or their mixtures. Many combustible flows need to get purified, depending on their purpose, for example, for various engines. They provide novel sources for traffic in the air, streets, roads, and waterways, not forgetting space technology dimensions.On the other hand, industrial fuels are often used as mixtures of gases or gases with other substances. This approach may facilitate the utilization of side streams. Also, municipal energy needs can be fulfilled by microbial gases. Microbial mixed cultures could play an essential role in the big picture of sustainable industries, living of people and agriculture, exhibiting an excessive total effect on societies' multifactorial development. The gas phase is key to realizing their potential.Gaseous emissions are inherent part of all forms of microbial metabolism, both aerobic and anoxic ones. Carbon dioxide is liberated both in respiration and fermentation, but the microbiota also binds volatile carbon compounds. CO&lt;sub&gt;2&lt;/sub&gt; is also a raw material for plant cultivation, e.g., in greenhouses or in algal pools which both often represent the first steps of food chains. Additionally, they produce biomass to produce energy, biochemicals, nutrition, and soil improvement. Gaseous products of the mixed microbial cultures are valuable sources for energy production as purified gases (e.g., biomethane, biohydrogen) or as mixtures (e.g., bio-hythane, volatiles). These relatively simple molecules also serve as supplies for other hydrocarbons (e.g., methanol). Also, many microbial metabolites serve as fuel sources (e.g., bio-oil) and substrates for further biosynthesis. This versatility of potential technological options in energy-making and for industrial processes could offer huge opportunities for green energies and sustainable industries, transportation, or municipalities. In the agricultural sector, the complete recycling also includes the consideration of gas phase. This aspect provides increasing sources for clean food production. Moreover, the chemoautotrophic bacteria, including the archaeal st","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"151-188"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator. 从 Knallgas 菌到有前途的生物制造宿主:裸冠突铜绿菌的进化。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_269
Daniel Casey, Laura Diaz-Garcia, Mincen Yu, Kang Lan Tee, Tuck Seng Wong
{"title":"From Knallgas Bacterium to Promising Biomanufacturing Host: The Evolution of Cupriavidus necator.","authors":"Daniel Casey, Laura Diaz-Garcia, Mincen Yu, Kang Lan Tee, Tuck Seng Wong","doi":"10.1007/10_2024_269","DOIUrl":"10.1007/10_2024_269","url":null,"abstract":"<p><p>The expanding field of synthetic biology requires diversification of microbial chassis to expedite the transition from a fossil fuel-dependent economy to a sustainable bioeconomy. Relying exclusively on established model organisms such as Escherichia coli and Saccharomyces cerevisiae may not suffice to drive the profound advancements needed in biotechnology. In this context, Cupriavidus necator, an extraordinarily versatile microorganism, has emerged as a potential catalyst for transformative breakthroughs in industrial biomanufacturing. This comprehensive book chapter offers an in-depth review of the remarkable technological progress achieved by C. necator in the past decade, with a specific focus on the fields of molecular biology tools, metabolic engineering, and innovative fermentation strategies. Through this exploration, we aim to shed light on the pivotal role of C. necator in shaping the future of sustainable bioprocessing and bioproduct development.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"59-84"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cable Bacteria and Their Biotechnological Application. 电缆细菌及其生物技术应用。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2025_284
Judith Stiefelmaier
{"title":"Cable Bacteria and Their Biotechnological Application.","authors":"Judith Stiefelmaier","doi":"10.1007/10_2025_284","DOIUrl":"10.1007/10_2025_284","url":null,"abstract":"<p><p>Cable bacteria grow as multicellular filaments several centimetres deep into the sediment of freshwaters and oceans. Hereby, cable bacteria show unique characteristics such as electrogenic sulphur oxidation, extremely high conductivity and ability for CO<sub>2</sub> fixation. This offers several possibilities of future applications in biotechnology with an outlook to sustainable processes. So far, research on cable bacteria is mostly concerning metabolism, electron transfer and effect on the surrounding sediment. Cultures are always performed on sediment from the natural habitat and in simple, small-scale reaction tubes, requiring further development for reproducible cultivation with scale-up capabilities. However, based on the known properties of cable bacteria, possible areas of application can already be derived. The use of cable bacteria in bioremediation is a promising approach, as the degradation of hydrocarbons has already been proven. Co-cultivation with plants could open up a further field of application, such as the described reduction of methane emissions from rice fields. Due to the extremely high conductivity of the filaments, cable bacteria are also very promising for incorporation into biodegradable microelectronics. By integrating electrodes into a suitable reactor system, bioelectrochemical processes could be implemented, either with the goal of electron uptake and product formation or for electricity generation.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"193-213"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous CO2 Absorption from a Power Plant and Wastewater Treatment. 发电厂和废水处理同时吸收二氧化碳。
4区 工程技术
Advances in biochemical engineering/biotechnology Pub Date : 2025-01-01 DOI: 10.1007/10_2024_260
Erik Dahlquist, Sebastian Schwede, Eva Thorin
{"title":"Simultaneous CO<sub>2</sub> Absorption from a Power Plant and Wastewater Treatment.","authors":"Erik Dahlquist, Sebastian Schwede, Eva Thorin","doi":"10.1007/10_2024_260","DOIUrl":"10.1007/10_2024_260","url":null,"abstract":"<p><p>There is a demand to remove CO<sub>2</sub> from thermal plants to abate global warming. At the same time authorities demand treating wastewater to remove nitrogen and phosphorus and also to produce food. By combining algae farming at a power plant and using nutrients from the wastewater, actions to meet all these demands can be combined to a win-win situation. In this paper we make estimates what the dimensions and design criteria there would be for such an integrated system. The size of the algae farm will be significant. If placed in the sea, this may be feasible, but then storms must be considered. If we place in lakes, it is more competition for other uses that causes a problem. Combining with also greenhouses may be a possible solution. The biomass produced can be used directly as food or be processed by, e.g., fermentation to produce chemicals and methane (biogas).</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":"137-149"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信