Valorizing Bio-Waste and Residuals.

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
Aikaterina L Stefi, Konstantinos E Vorgias
{"title":"Valorizing Bio-Waste and Residuals.","authors":"Aikaterina L Stefi, Konstantinos E Vorgias","doi":"10.1007/10_2025_278","DOIUrl":null,"url":null,"abstract":"<p><p>The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2025_278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The circular bioeconomy connects waste recycling with utilizing organic biomass waste for bioenergy, bio-based materials, and biochemical production. This integration promotes efficient resource utilization, reduced greenhouse gas emissions, and sustainable economic growth. Several technologies such as composting, anaerobic digestion, biochar production, gasification, pyrolysis, pelletization, and advanced thermal conversion technologies are utilized to manage agricultural waste efficiently. Waste-to-energy systems and food waste valorization techniques are employed to convert agro-waste into renewable energy sources such as bioethanol, biodiesel, and biogas through fermentation, transesterification, and anaerobic digestion. These biofuels offer renewable alternatives to fossil fuels, reducing greenhouse gas emissions and dependence on non-renewable resources. Rice husk, a globally abundant agricultural waste, can be utilized for energy production through technologies like direct combustion and fast pyrolysis. Biobutanol, synthesized from acetone-butanol-ethanol fermentation of agricultural residues like orange peel, presents a promising fuel option. Agricultural waste can also serve as feedstock for bio-based chemicals like organic acids, solvents, and polymers, reducing reliance on petroleum-based chemicals. Agro-waste materials like grass, garlic peel, and rice bran have shown potential for dye adsorption in wastewater treatment applications. Moreover, agricultural waste can be repurposed as animal feed, contributing to waste reduction and providing sustainable nutrition for livestock. Plant seeds and green biomass offer sustainable protein sources, while residues like straw and sawdust can be used for mushroom cultivation. Agro-waste biopolymers like starch and cellulose can be transformed into biodegradable plastics and biocomposites, offering eco-friendly alternatives. Additionally, agro-waste materials like straw, rice husks, and bamboo can be processed into construction materials, reducing environmental impact in building projects. Extracts from plant residues and fruit pomace can be utilized in pharmaceuticals, nutraceuticals, and cosmetics. Valorizing agro-waste for food, feed, fibers, and fuel offers opportunities to minimize waste and maximize resource efficiency, resulting in high-value products.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信