{"title":"[Research progress on mitochondrial copper homeostasis imbalance and fibrosis diseases].","authors":"Sai-Ya Zhu, Jing Liu, Chen Yu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Copper ions serve as co-factors for various enzymes and participate in multiple cellular processes. Mitochondria are essential copper reservoirs within the cell. Previous reviews have extensively summarized the association between mitochondrial copper homeostasis imbalance and hematologic disorders, cardiomyopathies, and skeletal myopathies. However, there is limited information regarding its association with organ fibrosis. This article outlines the role and mechanism of disrupted mitochondrial copper homeostasis in fibrotic diseases, and systematically elaborates copper absorption and transport, as well as the regulation of copper homeostasis within mitochondria. It focuses on the impacts of mitochondrial copper overload and deficiency on fibrotic diseases, and the application of copper chelators as potential anti-fibrotic therapeutic approaches.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"597-604"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Research progress on eosinophil heterogeneity in asthma].","authors":"Yan Chen, Song-Min Ying, Chao Zhang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Asthma is a heterogeneous disease characterized by chronic airway inflammation. More than half of asthma cases are induced by allergens. Eosinophils accumulate in large numbers in the airways, and their number is closely related to the severity of asthma. In recent years, extensive research has been conducted on the pathogenesis of eosinophils in asthma and the targeted therapeutic drugs for them. This article mainly reviews the research progress on the important role of eosinophil heterogeneity in the occurrence and development of asthma, and provides ideas for the personalized and precise treatment of asthma in the future.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"643-652"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Progress on the effects of cancer-related fibroblast induced by Helicobacter pylori infection on gastric epithelial-mesenchymal transition].","authors":"Yi-Lin Li, Li-Fei Zheng","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Helicobacter pylori (Hp) is a Gram-negative bacterium that colonizes in the gastric mucosa. Hp induces the production of cancer-associated fibroblasts (CAF) in the stomach. The virulence factors of Hp and CAF trigger epithelial-mesenchymal transition (EMT), leading to local inflammation, damage to the gastric mucosa, and the occurrence of chronic gastritis. Here, we summarize the molecular mechanisms of CAF mediated gastric EMT after Hp infection, providing new insights into potential molecular targets and strategies for the future treatment of Hp infection associated gastric cancer.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"547-560"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Involvement of microRNA-145/TGF-β in the regulation of swimming exercise on vascular calcification in type 2 diabetic rats].","authors":"Gang-Gang Xu, Chun-Lian Ma, Yi Yang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aimed to explore the effect of swimming exercise on vascular calcification in type 2 diabetic rats and its related molecular mechanism. Male Sprague Dawley (SD) rats were randomly divided into normal control (NC), diabetes control (DC) and diabetes+exercise (DE) groups. The DC and DE groups were intraperitoneally injected with streptozotocin (STZ) and fed with high-fat diet to establish type 2 diabetes mellitus model. The NC and DC groups did not exercise, and the DE group performed swimming exercise for 8 weeks. ELISA was used to detect the serum glycated hemoglobin A1c (HbA1c) level. The aortas of rats were taken as sample. Assay kits were used to detect vascular calcium content and alkaline phosphatase (ALP) activity. Von Kossa staining was used to detect calcium deposition. qRT-PCR was used detect the expression of microRNA-145 (miR-145). Western blot was used to detect the protein expression levels of smooth muscle contraction markers, calcification marker and related proteins. The results showed that, compared with the NC group, the blood glucose, serum HbA1c level, vascular calcium content and ALP activity in the DC group were significantly increased, the protein expression levels of smooth muscle contraction markers smooth muscle protein 22α (SM22α) and α-smooth muscle actin (α-SMA) were significantly down-regulated, and the protein expression level of calcification marker osteopontin (OPN) was significantly up-regulated; Compared with the DC group, the serum HbA1c level, vascular calcium content and ALP activity in the DE group were significantly decreased, the protein expression levels of SM22α and α-SMA were significantly up-regulated, and the protein expression level of OPN was significantly down-regulated; Compared with the NC group, the expression of miR-145-5p in the DC group was significantly down-regulated, and the protein expression levels of transforming growth factor-β (TGF-β), SMAD2, ERK1/2 and p-ERK1/2 were significantly up-regulated; Compared with the DC group, the expression of miR-145-5p was significantly up-regulated in the DE group, while the expressions of TGF-β, ERK1/2 and p-ERK1/2 were significantly down-regulated. These results suggest that miR-145/TGF-β signaling is involved in the improving effects of 8-week swimming exercise on glucose metabolism disorder, vascular smooth muscle cell phenotype switching and vascular calcification in type 2 diabetes mellitus.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"526-536"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Recent advances in the study of potential mitochondria-related therapeutic targets in acute myeloid leukemia].","authors":"Lu Han, Li Liu, Jing Liu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML), one of the most common types of leukemia, is characterized by its high malignancy and rapid progression with a 5-year survival rate of less than 30%. The incidence and mortality rates of AML are increasing with age. Over the past few decades, progress in AML treatment has been relatively slow. While traditional approaches such as chemotherapy and hematopoietic stem cell transplantation have significant limitations including treatment toxicity and chemotherapy resistance, recent advancements in the in-depth study of AML mechanisms have made targeted therapy a new option for AML treatment. Metabolic reprogramming is one of the key features of cancer, and mitochondrial dysfunction has been widely studied in various cancers. Mitochondrial dysfunction is prevalent in AML cells and closely associated with the development of AML. The AML cells exhibit significant differences from normal hematopoietic cells in energy metabolism, autophagy, apoptosis, and other aspects. Given that mitochondria are at the core of cellular energy metabolism, inhibiting pathways related to mitochondrial function holds significant potential for AML treatment. This review aims to explore recent advances on the role of mitochondrial dysfunction in AML cell survival, potential therapeutic targets in mitochondria, and related targeted drugs, aiming to provide ideas for the development of targeted therapies for AML.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"605-621"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Sun, En-Xu Liu, Zhao-Yong Li, Jia-Hao Duan, Fei Sun, Lei Yang, Shao-Feng Yang
{"title":"[Endoplasmic reticulum quality control system: a potential target for the treatment of intervertebral disc degeneration].","authors":"Yu Sun, En-Xu Liu, Zhao-Yong Li, Jia-Hao Duan, Fei Sun, Lei Yang, Shao-Feng Yang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>As the largest organelle in eukaryotic cells, the endoplasmic reticulum (ER) plays a crucial role in regulating intracellular protein folding, translation and assembly. Multiple quality control mechanisms in the ER ensure accurate modification of proteins in the ER lumen are accurately modified, thus maintaining calcium homeostasis, oxidative stress, cellular senescence and apoptosis. These mechanisms include ER stress (ERS), ER autophagy (ER-phagy, ERPA) and ER-associated degradation (ERAD). Intervertebral disc degeneration (IDD) is an age-related degenerative disease of the spine. Although the pathogenesis of IDD has not been fully elucidated, emerging evidence suggests that the ER quality control system may be involved in its progression. Previous studies have focused on mitochondrial quality control and its related mechanisms in diseases, with limited systematic summaries on the ER quality control system. In this paper, we comprehensively reviewed the molecular mechanisms of the ER quality control system and investigated its association with IDD. In addition, we summarized the potential therapeutic strategies targeting the ER quality control system to attenuate IDD progression, offering new insights into the pathogenesis and regenerative repair strategies of IDD.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"561-575"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Shi, Man Huang, Si-An Chen, Jun-Peng Xu, Qi-Hao Zhang, Wen-Jie Cao, Yun-Na Tian, Xiao-Ting Wang, Wan-Tie Wang
{"title":"[2-DG improves lung ischemia/reperfusion injury by inhibiting NLRP3-mediated pyroptosis in rats].","authors":"Lu Shi, Man Huang, Si-An Chen, Jun-Peng Xu, Qi-Hao Zhang, Wen-Jie Cao, Yun-Na Tian, Xiao-Ting Wang, Wan-Tie Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The aim of this study was to investigate whether the protective effect of 2-deoxyglucose (2-DG) on lung ischemia/reperfusion (I/R) injury is mediated by inhibiting nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis in rats. Male Sprague-Dawley rats were randomly divided into control group, 2-DG group, lung I/R injury group (I/R group) and 2-DG+I/R group. 2-DG (0.7 g/kg) was intraperitoneally injected 1 h prior to lung ischemia. The tissue structure was measured under light microscope. Lung injury parameters were detected. The contents of malondialdehyde (MDA), myeloperoxidase (MPO) and lactate were determined by commercially available kits. ELISA was used to detect the levels of IL-1β and IL-18. Western blot, qRT-PCR and immunofluorescence staining were used to measure the expression changes of glycolysis and pyroptosis related indicators. The results showed that there was no significant difference in the parameters between the control group and the 2-DG group. However, the lung injury parameters, oxidative stress response, lactic acid content, IL-1β, and IL-18 levels were significantly increased in the I/R group. The protein expression levels of glycolysis and pyroptosis related indicators including hexokinase 2 (HK2), pyruvate kinase 2 (PKM2), NLRP3, Gasdermin superfamily member GSDMD-N, cleaved-Caspase1, cleaved-IL-1β and cleaved-IL-18, and the gene expression levels of HK2, PKM2 and NLRP3 were markedly up-regulated in the I/R group compared with those in the control group. The expression of HK2 and NLRP3 was also increased detected by immunofluorescence staining. Compared with the I/R group, the 2-DG+I/R group exhibited significantly improved alveolar structure and inflammatory infiltration, reduced lung injury parameters, and decreased expression of glycolysis and pyroptosis related indicators. These results suggest that 2-DG protects against lung I/R injury possibly by inhibiting NLRP3-mediated pyroptosis in rats.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"517-525"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Research progress of KCNJ5 gene in aldosterone-producing adenoma].","authors":"Guan-Jun Jia, Hong-Ying Lyu, Ming-Shuang Hou, Qian-Qian Chen, Jing Xu, Yong-Xiang Li, Meng-Yao Li, Yu-Shun Kou, Rui-Ling Ma, Zheng-Jie Teng, Lin Yi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Aldosterone-producing adenoma is a subtype of primary aldosteronism. Recent advancements in multi-omics research have led to significant progress in understanding primary aldosteronism at the genetic level. Among the various genes associated with the development of aldosterone-producing adenomas, the KCNJ5 (potassium inwardly rectifying channel, subfamily J, member 5) gene has received considerable attention due to its prevalence as the most common somatic mutation gene in primary aldosteronism. This paper aims to integrate the existing evidence on the involvement of KCNJ5 gene in the pathogenesis of aldosterone-producing adenomas, to enhance the understanding of the underlying mechanisms of aldosterone-producing adenomas from the perspective of genetics, and to provide novel insights for the clinical diagnosis and treatment of aldosterone-producing adenomas.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"587-596"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi-Wen Chang, An-Peng Zhao, Yan Zhong, Fei-Fei Liu, Rong Wang
{"title":"[Changes of ferroptosis related pathways in hippocampus of mice exposed to high-altitude hypoxia].","authors":"Xi-Wen Chang, An-Peng Zhao, Yan Zhong, Fei-Fei Liu, Rong Wang","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The present study aimed to investigate the occurrence of ferroptosis in mouse hippocampal tissue and changes in related pathways after exposure to high-altitude hypoxia. A low-pressure hypoxia model was established using a high-altitude environment at 4 010 m. HE staining was used to observe morphological changes in mouse hippocampal tissue, immunohistochemical staining was used to observe lipid peroxidation levels in hippocampal tissue, and corresponding kits were used to measure malondialdehyde (MDA), reduced glutathione (GSH), and Fe<sup>2+</sup> levels in hippocampal tissue. Western blot was used to detect glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH1), ferroportin 1 (FPN1), transferrin receptor 1 (TfR1), ferroptosis suppressor protein 1 (FSP1), and acyl-CoA synthase long chain family member 4 (ACSL4). The results showed that, compared with the plain control group, the mice exposed to high-altitude hypoxia for 1, 3, 7, and 14 d exhibited significant pathological damage, disordered arrangement, and obvious nuclear condensation in the dentate gyrus of the hippocampus. Compared with the plain control group, high-altitude hypoxia exposure increased 4-hydroxynonenal (4-HNE) content in the dentate gyrus and hippocampal MDA content, whereas significantly decreased hippocampal GSH content. Compared with the plain control group, the Fe<sup>2+</sup> content in the hippocampus of mice exposed to high-altitude hypoxia for 14 d significantly increased. Compared with the plain control group, the protein expression levels of GPX4, FTH1, FPN1, TfR1, and FSP1 in the hippocampus of mice exposed to high-altitude hypoxia were significantly down-regulated (SLC7A11 was significantly down-regulated only in the 7-d high-altitude hypoxia exposure group), while the protein expression level of ACSL4 was only significantly up-regulated in the 14-d high-altitude hypoxia exposure group. These results suggest that exposure to high-altitude hypoxia for 14 d can reduce GSH synthesis in mouse hippocampus, down-regulate GPX4 expression, lead to GSH metabolism disorders, inhibit iron storage and efflux, promote lipid peroxidation reaction, and inhibit CoQ10H2's anti-lipid peroxidation effect, ultimately leading to ferroptosis.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"507-516"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yin-Hao Wang, Bo Gao, Juan Li, Long-Wei Wei, Wei Chen
{"title":"[Research progress on striatal D2-MSNs plasticity mediated improvement of motor dysfunction by exercises in Parkinson's disease].","authors":"Yin-Hao Wang, Bo Gao, Juan Li, Long-Wei Wei, Wei Chen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Parkinson's disease (PD), a prevalent neurodegenerative condition, manifests predominantly through the degeneration of nigrostriatal dopaminergic (DA) pathways, culminating in a notable depletion of striatal dopamine. This pathophysiological process critically impairs the DA-mediated regulation of motor behaviors within the basal ganglia circuitry, particularly impacting various subtypes of striatal medium spiny neurons. Recent advancements in neuroscientific research have illuminated the pivotal role of D2-dopamine receptor expressing medium spiny neurons (D2-MSNs) plasticity in coordinating motor control in PD. Intriguingly, aerobic exercise emerges as a potent therapeutic intervention, capable of preventing or improving motor impairments. This ameliorative effect is mediated through the modulation of DA receptor activity and the consequent activation of downstream extracellular signal-regulated kinase (Erk) signaling pathway. This article meticulously reviewed the intricate regulatory mechanisms governing the structural and functional plasticity of striatal D2-MSNs in the context of PD. It particularly emphasized the transformative impact of aerobic exercise on motor deficits in PD, attributing this effect to the modulation of striatal D2-MSNs.</p>","PeriodicalId":7134,"journal":{"name":"Acta physiologica Sinica","volume":"76 4","pages":"622-630"},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}