3 BiotechPub Date : 2025-01-01Epub Date: 2025-01-04DOI: 10.1007/s13205-024-04166-5
Haipeng Xiao, Qianjin He, Yang Hu, Chang Li, Han Tian, Feng Chen, Wenchong Song
{"title":"A novel DNA damage-related gene index for predicting prognosis in gastric cancer.","authors":"Haipeng Xiao, Qianjin He, Yang Hu, Chang Li, Han Tian, Feng Chen, Wenchong Song","doi":"10.1007/s13205-024-04166-5","DOIUrl":"10.1007/s13205-024-04166-5","url":null,"abstract":"<p><p>Gastric cancer is one of the major cancers with high cancer mortality and shows significant heterogeneity. The development of precise prognostic models is crucial for advancing treatment strategies. Recognizing the pivotal role of DNA damage in tumor progression, we conducted a consensus clustering analysis of DNA damage-related genes to categorize gastric cancer patients from the TCGA clinical cohort into distinct subtypes. Prognostic models were then constructed utilizing machine learning algorithms following Cox regression with differentially expressed genes. Validation was performed using the GSE gastric cancer cohort. Additionally, we investigated other characteristic responses of patients through gene mapping and drug sensitivity analysis. This study 12 differentially prognostic signature genes between the 2 DNA damage subtypes identified were used to calculate risk scores for the patients. This score predicts the prognosis of patients with gastric cancer and their overall survival time. Higher risk scores mean less drug sensitivity, lower survival, and possibly a poorer response to immunotherapy. Our findings provide the basis for future studies targeting DNA damage and its immune microenvironment to improve prognosis and response to immunotherapy.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"32"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2024-12-05DOI: 10.1007/s13205-024-04165-6
Xinming Feng, Xinyu Cui, Kun Wang, Juanjuan Liu, Dongdong Meng
{"title":"Enzymatic characterization of a thermostable 6-phosphogluconate dehydrogenase from <i>Hydrogenobacter thermophilus</i> and its application for NADH regeneration.","authors":"Xinming Feng, Xinyu Cui, Kun Wang, Juanjuan Liu, Dongdong Meng","doi":"10.1007/s13205-024-04165-6","DOIUrl":"10.1007/s13205-024-04165-6","url":null,"abstract":"<p><p>6-Phosphogluconate dehydrogenases (6PGDHs) are widely existing as reduced cofactor (NADH/NADPH) regeneration biocatalysts. Herein, a thermostable 6PGDH from <i>Hydrogenobacter thermophilus</i> (Ht6PGDH) was overexpressed in <i>Escherichia coli</i> and enzymologically characterized. Ht6PGDH exhibited exceptional stability and catalytic activity under high-temperature conditions, with an optimum temperature of 85 °C and the ability to maintain high activity for prolonged periods at 70 °C, which could be purified through a one-step heat treatment. Moreover, Ht6PGDH exhibited a preference for NAD<sup>+</sup> with a <i>K</i> <sub>m</sub> value of 0.4 mM and a <i>k</i> <sub>cat</sub> value of 28.6 s⁻<sup>1</sup>, demonstrating a significant preference over NADP<sup>+</sup>. These properties render Ht6PGDH a potentially valuable enzyme for high-temperature bioconversion and in vitro synthetic biosystems. Additional research showed that Ht6PGDH excelled in the regeneration of NADH, achieving efficient lactate production when integrated into an in vitro synthetic biosystem containing lactate dehydrogenase (LDH). Furthermore, the cascade reaction of Ht6PGDH with glucose-6-phosphate dehydrogenase (G6PDH) was explored for NADH regeneration using starch as the substrate, further validating its potential application in complex biosynthetic systems.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04165-6.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"3"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2024-12-12DOI: 10.1007/s13205-024-04180-7
Leyao Fang, Junxi Shen, Yi Wu, Zhoujin Tan
{"title":"Involvement of intestinal mucosal microbiota in adenine-induced liver function injury.","authors":"Leyao Fang, Junxi Shen, Yi Wu, Zhoujin Tan","doi":"10.1007/s13205-024-04180-7","DOIUrl":"10.1007/s13205-024-04180-7","url":null,"abstract":"<p><p>Adenine is frequently utilized as a model medication for chronic renal disease. Adenine can affect organs other than the kidneys, including the heart and the intestine. The liver is a vital organ involved in the in vivo metabolism of adenine. Adenine may negatively impact liver function. Research indicated that adenine caused dysbiosis of the gut microbiota in mice. Investigations into the gut-liver axis have demonstrated a substantial association between drug-induced hepatic dysfunction and gut microbiota. Consequently, we delivered distinct dosages of adenine via gavage to mice to examine the correlation between adenine-induced liver impairment and gut microbiota dysbiosis. Mice were treated with low-dose adenine suspension (NLA), medium-dose adenine suspension (NMA), high-dose adenine suspension (NHA), and sterile water (NC) as a control. The results indicated that mice in the NLA, NMA, and NHA groups had decreased body weight and a reduction in liver index. Subsequent to adenine administration, the concentrations of AST, ALT, and LDH increased, whereas SDH levels decreased. As doses increased, liver function impairment and hepatic energy metabolism abnormalities aggravated. Adenine also damaged the colonic architecture in mice. Moreover, adenine modified the makeup and structure of the gut mucosal microbiota, enhancing specific bacterial genera and influencing the microbiota's energy metabolism-related functions. The results of our research established a correlation among certain bacteria, liver function injury, and hepatic energy metabolism. The gut mucosal microbiota was involved in adenine-induced liver injury and hepatic energy metabolism. These results can offer novel insights into the role of gut microbiota in drug-induced liver injury and provide specific guidelines for the modeling and therapeutic application of adenine.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"6"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolation, structure analysis and expression characterization of the Hexokinase gene family in <i>Sorghum bicolor</i>.","authors":"Sen Li, Yansheng Liu, Xin'er Qin, Xiaofei He, Shaopeng Han, Yang Lv, Zhuying Deng, Gongjian Zeng, Xinqiang Gao, Yongfeng Hu, Xiangling Shen","doi":"10.1007/s13205-024-04190-5","DOIUrl":"10.1007/s13205-024-04190-5","url":null,"abstract":"<p><p>Hexokinases (HXK) not only facilitate carbohydrate metabolism but also play important roles in sugar sensing in higher plants. <i>HXK</i> gene families have been extensively discussed in many plant species; however, comprehensive information regarding <i>HXKs</i> in sorghum remains unclear. To address this gap, we identified 7 putative sorghum <i>HXKs</i> (<i>SbHXK1</i> to <i>SbHXK7</i>), and the features of their conserved domains, gene structure, evolutionary tree, and cis-acting elements were systematically characterized to reveal the evolutionary conservation between different plant species. Based on expression profiling, we found that different expression patterns of <i>SbHXKs</i> were associated with different physiological processes, including abiotic stresses. Further qRT-PCR verification under salt and sucrose treatment confirmed that <i>SbHXK2</i>, <i>SbHXK4</i>, and <i>SbHXK5</i> may play very important roles under high osmotic pressure. Notably, SbHXKs are predominantly localized in the cytoplasm, in contrast to some rice and <i>Arabidopsis</i> HXKs, which are localized in chloroplasts or mitochondria, suggesting divergent roles for SbHXKs. In summary, our study provides a theoretical foundation for understanding the HXK gene family and offers fundamental insights of <i>SbHXKs</i> in sorghum.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04190-5.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"20"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytochemical composition, in vitro cytotoxicity and in silico ADME/Tox analysis of the active compounds of <i>Oxalis latifolia</i> Kunth. extracts with promising anticancer potential.","authors":"Arumugam Vignesh, Karuppasamy Dharani, Subramaniam Selvakumar, Krishnan Vasanth","doi":"10.1007/s13205-024-04167-4","DOIUrl":"10.1007/s13205-024-04167-4","url":null,"abstract":"<p><p>This study investigated the anticancer phytocompounds in leaf extracts of <i>Oxalis latifolia</i> Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.15 GLE mg/100 mg), proteins (28.13 ± 0.94 BSA mg/100 mg), and amino acids (13.25 ± 1.16 LE mg/100 mg). Ethyl acetate extracts had the highest concentrations of secondary metabolites, including phenolic content (122.52 ± 4.27 GAE mg/100 mg), total flavonoids (91.86 ± 2.65 QE mg/100 mg), and alkaloids (82.18 ± 0.72 COLE mg/100 mg). In addition, strong antioxidant activities were observed in the DPPH<sup>•</sup> scavenging assay (IC<sub>50</sub> 11.51 ± 2.28 µg/mL), ABTS<sup>·+</sup> radical cation scavenging activity (97.42 ± 7.19 µM TE/g), and FRAP assay (14.34 ± 1.24 mM Fe(II)/mg). Based on preliminary analysis, the ethyl acetate extract was fractionated using thin-layer chromatography (TLC), yielding two distinct fractions with Rf values of 0.31 and 0.76. GC-MS analysis of these fractions identified 33 bioactive compounds. These fractions exhibited anticancer activity against the A549 lung cancer cell line, with IC<sub>50</sub> values of 47.25 µg/mL and 48.31 µg/mL, as determined by the MTT assay. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies on 25 selected compounds indicated favorable pharmacokinetic properties and drug-likeness. In silico molecular docking showed strong binding affinities of these bioactive compounds to the p21 protein, comparable to the synthetic drug Cisplatin-quercetin. The results highlight the potential of <i>O. latifolia</i> in anticancer therapy, particularly through modulation of the p21 pathway, supported by in vitro cytotoxicity assessments, molecular docking, and ADMET analysis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04167-4.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"19"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2024-12-15DOI: 10.1007/s13205-024-04172-7
Pedro Marcus Pereira Vidigal, Humberto Moreira Hungaro
{"title":"Genome sequencing of <i>Escherichia coli</i> phage <i>UFJF_EcSW4</i> reveals a novel lytic <i>Kayfunavirus</i> species.","authors":"Pedro Marcus Pereira Vidigal, Humberto Moreira Hungaro","doi":"10.1007/s13205-024-04172-7","DOIUrl":"10.1007/s13205-024-04172-7","url":null,"abstract":"<p><p>The <i>Escherichia coli</i> phage <i>UFJF_EcSW4</i> was isolated from polluted stream water and showed clear lysis plaques on the host, measuring 0.67 ± 0.43 mm, with a titer of 9.57 ± 0.23 log PFU/ml. It demonstrated a very narrow host range, infecting only its host. Additionally, it has a short latent period of 9 min, a burst size of 49 PFU/infected cell, and stability over a wide range of pH, temperature, and free residual chlorine. The phage has a double-stranded DNA genome spanning 40,299 bp, with a GC content of 49.87% and short-direct terminal repeats (DTR) sequences of 286 bp. The <i>UFJF_EcSW4</i> genome contains 55 genes, organized into functional modules with a unidirectional arrangement, regulated by 22 promoters (three from the phage and 19 from the host) and three Rho-independent terminators. Comparative analysis revealed that the <i>UFJF_EcSW4</i> genome shares an average genomic similarity of 77.82% with the genome sequences of phages from the <i>Kayfunavirus</i> genus but does not surpass the 95% threshold necessary for species classification. Therefore, the <i>UFJF_EcSW4</i> is a novel <i>Kayfunavirus UFJF_EcSW4</i> species belonging to the <i>Studiervirinae</i> subfamily.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04172-7.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"10"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2024-12-24DOI: 10.1007/s13205-024-04185-2
Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj
{"title":"Investigating the neuroprotective properties of <i>Sargassum wightii</i> extract against MPP<sup>+</sup>-induced apoptosis in SH-SY5Y human neuroblastoma cells.","authors":"Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj","doi":"10.1007/s13205-024-04185-2","DOIUrl":"10.1007/s13205-024-04185-2","url":null,"abstract":"<p><p>This study aims to assess the neuroprotective effects of the methanolic extract of <i>Sargassum wightii</i> against oxidative stress and cell death induced by neurotoxins MPP <sup>+</sup> in SH-SY5Y cells. Briefly, the methanolic extract of <i>S.wightii</i> decreased the cytotoxicity of MPP <sup>+</sup> in SH-SY5Y cells. Treatment with <i>S.wightii</i> extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP <sup>+</sup> -induced cells. Flow cytometry analysis with annexin V/PI staining reveals apoptosis and necrosis in SH-SY5Y cell lines upon exposure to 1 mM of MPP <sup>+</sup> . However, 100-400 µg/ml concentrations of <i>S.wightii</i> extract effectively decrease apoptosis in SH-SY5Y cells. Furthermore, <i>S.wightii</i> inhibits caspase-3 activity, effectively shielding neuronal cells against MPP <sup>+</sup> -induced cell death. Mitochondrial membrane potential (MMP) assay using a JC-1 fluorescent probe indicates that the methanolic extract of <i>S.wightii</i> exhibits protective effects against MPP <sup>+</sup> -induced cell death and maintains mitochondrial membrane potential. Our results conclude that exposing SH-SY5Y cells to a methanolic extract of <i>S.wightii</i> could potentially increase the likelihood of inhibiting the cascade mechanism, stopping MPP<sup>+</sup>-induced apoptosis, and preventing the rupture of the mitochondrial membrane. However, the lack of low solubility and poor bioavailability reduce the therapeutic efficacy of <i>S.wightii</i>. Liposome-based drug delivery systems can improve the bioavailability and stability of bioactive compounds, enhancing their therapeutic potential. Hence, <i>S.wightii</i> may hold promise as an innovative treatment for neurological ailments.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"22"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2025-01-03DOI: 10.1007/s13205-024-04197-y
Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul
{"title":"Nanoformulated phytochemicals in skin anti-aging research: an updated mini review.","authors":"Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul","doi":"10.1007/s13205-024-04197-y","DOIUrl":"10.1007/s13205-024-04197-y","url":null,"abstract":"<p><p>Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"31"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
3 BiotechPub Date : 2025-01-01Epub Date: 2025-01-05DOI: 10.1007/s13205-024-04195-0
Priya, Arun Kumar, Dhruv Kumar
{"title":"Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications.","authors":"Priya, Arun Kumar, Dhruv Kumar","doi":"10.1007/s13205-024-04195-0","DOIUrl":"10.1007/s13205-024-04195-0","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"33"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural characterization, in-silico studies, and antifungal activity of 5-methylmellein isolated from endophytic <i>Alternaria burnsii</i>.","authors":"Vagish Dwibedi, Gulshan Kumar, Mohammad Khalid Al-Sadoon, Gursharan Kaur, Ashok Kumar, Nancy George, Mahavir Joshi, Rajinder Kaur, Palak Rana, Santosh Kumar Rath","doi":"10.1007/s13205-024-04155-8","DOIUrl":"10.1007/s13205-024-04155-8","url":null,"abstract":"<p><p>The present investigation focused on exploring the potential of fungal endophytes as a valuable source of bioactive compounds with diverse applications. The phenolic compound 5-methylmellein was isolated for the first time from <i>Alternaria burnsii</i>, an endophytic fungus associated with <i>Morus alba</i> Linn. The compounds were structurally characterized using comprehensive spectral analysis, including <sup>1</sup>H-, <sup>13</sup>C, and 2D-NMR, as well as HRESI-MS. The study investigated the antifungal activity of 5-methylmellein against several plant pathogenic fungi, including <i>Botrytis cinerea</i>, <i>Colletotrichum gloeosporioides</i>, <i>Cercospora beticola</i>, and <i>Rhizoctonia solani</i>. In vitro assays showed significant inhibition of various plant pathogenic fungi, and the IC<sub>50</sub> values ranging from 34.59 ± 1.03<sup>a</sup> µg/mL to 44.76 ± 1.03<sup>b</sup> µg/mL against the tested fungi. In vivo experiments on apples and grapes revealed that 5-Methylmellein significantly reduced fruit decay caused by <i>Botrytis cinerea</i>. The wound incidence in the control group reached 95.78%, while the treated groups exhibited a reduction of 37.54% after 15 days. These findings underscore the potential of 5-methylmellein as a potent antifungal agent, suggesting its eco-friendly application in agriculture for managing fruit decay.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"1"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}