从益生菌中提取的抗变形链球菌黏液结合蛋白的体内和体外评价。

IF 2.9 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-09-01 Epub Date: 2025-08-14 DOI:10.1007/s13205-025-04466-4
Ghazaleh Sheikhi, Soheil Shajari, Sepehr Nouri, Hassan Mohabatkar, Mandana Behbahani
{"title":"从益生菌中提取的抗变形链球菌黏液结合蛋白的体内和体外评价。","authors":"Ghazaleh Sheikhi, Soheil Shajari, Sepehr Nouri, Hassan Mohabatkar, Mandana Behbahani","doi":"10.1007/s13205-025-04466-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop a predictive model for mucus-binding proteins using machine learning and to experimentally evaluate the anti-cariogenic effects of selected probiotic strains. In silico, a computational method was established utilizing Support Vector Machine (SVM) and AdaBoost algorithms with pseudo amino acid composition (PseAAC) for protein sequence representation. The predictive model achieved high accuracy. Specifically, the SVM model demonstrated 94% accuracy, 96% sensitivity, 91% specificity, and an 88% Matthews correlation coefficient (MCC) on a labeled test dataset. In vitro experiments assessed the antimicrobial activity and anti-biofilm formation effects of various probiotic strains against <i>Streptococcus mutans</i>. <i>Lactobacillus plantarum 1058</i> exhibited the highest inhibitory effect on <i>S. mutans</i> growth, reducing the bacterial count to 4.3 log CFU/ml after 24 h, while <i>Bifidobacterium adolescentis 1536</i> inhibited it the least (5.4 log CFU/ml). Furthermore, <i>L. plantarum 1058</i> demonstrated the highest inhibition of <i>S. mutans</i> biofilm formation (98.68%), whereas <i>Bifidobacterium animalis subsp. lactis</i> showed the lowest inhibition (75.18%). These findings suggest that the developed computational model effectively predicts mucus-binding proteins and the evaluated probiotic strains hold promise for inhibiting <i>S. mutans</i> growth and biofilm formation, thus offering promising strategies for maintaining oral health and preventing dental caries.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 9","pages":"297"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354941/pdf/","citationCount":"0","resultStr":"{\"title\":\"In silico and in vitro evaluation of mucus-binding proteins from probiotics against <i>Streptococcus mutans</i>.\",\"authors\":\"Ghazaleh Sheikhi, Soheil Shajari, Sepehr Nouri, Hassan Mohabatkar, Mandana Behbahani\",\"doi\":\"10.1007/s13205-025-04466-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to develop a predictive model for mucus-binding proteins using machine learning and to experimentally evaluate the anti-cariogenic effects of selected probiotic strains. In silico, a computational method was established utilizing Support Vector Machine (SVM) and AdaBoost algorithms with pseudo amino acid composition (PseAAC) for protein sequence representation. The predictive model achieved high accuracy. Specifically, the SVM model demonstrated 94% accuracy, 96% sensitivity, 91% specificity, and an 88% Matthews correlation coefficient (MCC) on a labeled test dataset. In vitro experiments assessed the antimicrobial activity and anti-biofilm formation effects of various probiotic strains against <i>Streptococcus mutans</i>. <i>Lactobacillus plantarum 1058</i> exhibited the highest inhibitory effect on <i>S. mutans</i> growth, reducing the bacterial count to 4.3 log CFU/ml after 24 h, while <i>Bifidobacterium adolescentis 1536</i> inhibited it the least (5.4 log CFU/ml). Furthermore, <i>L. plantarum 1058</i> demonstrated the highest inhibition of <i>S. mutans</i> biofilm formation (98.68%), whereas <i>Bifidobacterium animalis subsp. lactis</i> showed the lowest inhibition (75.18%). These findings suggest that the developed computational model effectively predicts mucus-binding proteins and the evaluated probiotic strains hold promise for inhibiting <i>S. mutans</i> growth and biofilm formation, thus offering promising strategies for maintaining oral health and preventing dental caries.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 9\",\"pages\":\"297\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-025-04466-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04466-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用机器学习技术建立黏液结合蛋白的预测模型,并通过实验评估所选益生菌菌株的抗龋齿作用。在计算机上,利用支持向量机(SVM)和AdaBoost算法与伪氨基酸组成(PseAAC)建立了蛋白质序列表示的计算方法。该预测模型达到了较高的预测精度。具体而言,SVM模型在标记的测试数据集上显示出94%的准确性,96%的灵敏度,91%的特异性和88%的马修斯相关系数(MCC)。体外实验考察了不同益生菌菌株对变形链球菌的抑菌活性和抗生物膜形成作用。植物乳杆菌1058对变形链球菌生长的抑制作用最强,24 h后细菌数量减少至4.3 log CFU/ml,而青少年双歧杆菌1536对变形链球菌的抑制作用最小(5.4 log CFU/ml)。此外,植物乳杆菌1058对变形链球菌生物膜形成的抑制作用最高(98.68%),动物双歧杆菌1058对变形链球菌生物膜形成的抑制作用最高。乳酸菌的抑菌率最低(75.18%)。这些发现表明,开发的计算模型有效地预测了黏液结合蛋白,评估的益生菌菌株有望抑制变形链球菌的生长和生物膜的形成,从而为维持口腔健康和预防龋齿提供了有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico and in vitro evaluation of mucus-binding proteins from probiotics against Streptococcus mutans.

This study aimed to develop a predictive model for mucus-binding proteins using machine learning and to experimentally evaluate the anti-cariogenic effects of selected probiotic strains. In silico, a computational method was established utilizing Support Vector Machine (SVM) and AdaBoost algorithms with pseudo amino acid composition (PseAAC) for protein sequence representation. The predictive model achieved high accuracy. Specifically, the SVM model demonstrated 94% accuracy, 96% sensitivity, 91% specificity, and an 88% Matthews correlation coefficient (MCC) on a labeled test dataset. In vitro experiments assessed the antimicrobial activity and anti-biofilm formation effects of various probiotic strains against Streptococcus mutans. Lactobacillus plantarum 1058 exhibited the highest inhibitory effect on S. mutans growth, reducing the bacterial count to 4.3 log CFU/ml after 24 h, while Bifidobacterium adolescentis 1536 inhibited it the least (5.4 log CFU/ml). Furthermore, L. plantarum 1058 demonstrated the highest inhibition of S. mutans biofilm formation (98.68%), whereas Bifidobacterium animalis subsp. lactis showed the lowest inhibition (75.18%). These findings suggest that the developed computational model effectively predicts mucus-binding proteins and the evaluated probiotic strains hold promise for inhibiting S. mutans growth and biofilm formation, thus offering promising strategies for maintaining oral health and preventing dental caries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信