3 Biotech最新文献

筛选
英文 中文
Phytochemical composition, in vitro cytotoxicity and in silico ADME/Tox analysis of the active compounds of Oxalis latifolia Kunth. extracts with promising anticancer potential. 草叶草(Oxalis latifolia Kunth)的植物化学成分、体外细胞毒性及ADME/Tox分析。具有抗癌潜力的提取物。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-20 DOI: 10.1007/s13205-024-04167-4
Arumugam Vignesh, Karuppasamy Dharani, Subramaniam Selvakumar, Krishnan Vasanth
{"title":"Phytochemical composition, in vitro cytotoxicity and in silico ADME/Tox analysis of the active compounds of <i>Oxalis latifolia</i> Kunth. extracts with promising anticancer potential.","authors":"Arumugam Vignesh, Karuppasamy Dharani, Subramaniam Selvakumar, Krishnan Vasanth","doi":"10.1007/s13205-024-04167-4","DOIUrl":"10.1007/s13205-024-04167-4","url":null,"abstract":"<p><p>This study investigated the anticancer phytocompounds in leaf extracts of <i>Oxalis latifolia</i> Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.15 GLE mg/100 mg), proteins (28.13 ± 0.94 BSA mg/100 mg), and amino acids (13.25 ± 1.16 LE mg/100 mg). Ethyl acetate extracts had the highest concentrations of secondary metabolites, including phenolic content (122.52 ± 4.27 GAE mg/100 mg), total flavonoids (91.86 ± 2.65 QE mg/100 mg), and alkaloids (82.18 ± 0.72 COLE mg/100 mg). In addition, strong antioxidant activities were observed in the DPPH<sup>•</sup> scavenging assay (IC<sub>50</sub> 11.51 ± 2.28 µg/mL), ABTS<sup>·+</sup> radical cation scavenging activity (97.42 ± 7.19 µM TE/g), and FRAP assay (14.34 ± 1.24 mM Fe(II)/mg). Based on preliminary analysis, the ethyl acetate extract was fractionated using thin-layer chromatography (TLC), yielding two distinct fractions with Rf values of 0.31 and 0.76. GC-MS analysis of these fractions identified 33 bioactive compounds. These fractions exhibited anticancer activity against the A549 lung cancer cell line, with IC<sub>50</sub> values of 47.25 µg/mL and 48.31 µg/mL, as determined by the MTT assay. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies on 25 selected compounds indicated favorable pharmacokinetic properties and drug-likeness. In silico molecular docking showed strong binding affinities of these bioactive compounds to the p21 protein, comparable to the synthetic drug Cisplatin-quercetin. The results highlight the potential of <i>O. latifolia</i> in anticancer therapy, particularly through modulation of the p21 pathway, supported by in vitro cytotoxicity assessments, molecular docking, and ADMET analysis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04167-4.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"19"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome sequencing of Escherichia coli phage UFJF_EcSW4 reveals a novel lytic Kayfunavirus species. 大肠杆菌噬菌体UFJF_EcSW4的基因组测序揭示了一种新的裂解克夫纳病毒。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-15 DOI: 10.1007/s13205-024-04172-7
Pedro Marcus Pereira Vidigal, Humberto Moreira Hungaro
{"title":"Genome sequencing of <i>Escherichia coli</i> phage <i>UFJF_EcSW4</i> reveals a novel lytic <i>Kayfunavirus</i> species.","authors":"Pedro Marcus Pereira Vidigal, Humberto Moreira Hungaro","doi":"10.1007/s13205-024-04172-7","DOIUrl":"10.1007/s13205-024-04172-7","url":null,"abstract":"<p><p>The <i>Escherichia coli</i> phage <i>UFJF_EcSW4</i> was isolated from polluted stream water and showed clear lysis plaques on the host, measuring 0.67 ± 0.43 mm, with a titer of 9.57 ± 0.23 log PFU/ml. It demonstrated a very narrow host range, infecting only its host. Additionally, it has a short latent period of 9 min, a burst size of 49 PFU/infected cell, and stability over a wide range of pH, temperature, and free residual chlorine. The phage has a double-stranded DNA genome spanning 40,299 bp, with a GC content of 49.87% and short-direct terminal repeats (DTR) sequences of 286 bp. The <i>UFJF_EcSW4</i> genome contains 55 genes, organized into functional modules with a unidirectional arrangement, regulated by 22 promoters (three from the phage and 19 from the host) and three Rho-independent terminators. Comparative analysis revealed that the <i>UFJF_EcSW4</i> genome shares an average genomic similarity of 77.82% with the genome sequences of phages from the <i>Kayfunavirus</i> genus but does not surpass the 95% threshold necessary for species classification. Therefore, the <i>UFJF_EcSW4</i> is a novel <i>Kayfunavirus UFJF_EcSW4</i> species belonging to the <i>Studiervirinae</i> subfamily.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04172-7.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"10"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646959/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the neuroprotective properties of Sargassum wightii extract against MPP+-induced apoptosis in SH-SY5Y human neuroblastoma cells. 研究马尾草提取物对MPP+诱导的SH-SY5Y人神经母细胞瘤细胞凋亡的神经保护作用。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-24 DOI: 10.1007/s13205-024-04185-2
Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj
{"title":"Investigating the neuroprotective properties of <i>Sargassum wightii</i> extract against MPP<sup>+</sup>-induced apoptosis in SH-SY5Y human neuroblastoma cells.","authors":"Rajeswari Ramasamy, Muthukumaran Azhaguchamy, Johnson Retnaraj Samuel Selvan Christyraj, Lalithalakshmi Kanagaraj","doi":"10.1007/s13205-024-04185-2","DOIUrl":"10.1007/s13205-024-04185-2","url":null,"abstract":"<p><p>This study aims to assess the neuroprotective effects of the methanolic extract of <i>Sargassum wightii</i> against oxidative stress and cell death induced by neurotoxins MPP <sup>+</sup> in SH-SY5Y cells. Briefly, the methanolic extract of <i>S.wightii</i> decreased the cytotoxicity of MPP <sup>+</sup> in SH-SY5Y cells. Treatment with <i>S.wightii</i> extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP <sup>+</sup> -induced cells. Flow cytometry analysis with annexin V/PI staining reveals apoptosis and necrosis in SH-SY5Y cell lines upon exposure to 1 mM of MPP <sup>+</sup> . However, 100-400 µg/ml concentrations of <i>S.wightii</i> extract effectively decrease apoptosis in SH-SY5Y cells. Furthermore, <i>S.wightii</i> inhibits caspase-3 activity, effectively shielding neuronal cells against MPP <sup>+</sup> -induced cell death. Mitochondrial membrane potential (MMP) assay using a JC-1 fluorescent probe indicates that the methanolic extract of <i>S.wightii</i> exhibits protective effects against MPP <sup>+</sup> -induced cell death and maintains mitochondrial membrane potential. Our results conclude that exposing SH-SY5Y cells to a methanolic extract of <i>S.wightii</i> could potentially increase the likelihood of inhibiting the cascade mechanism, stopping MPP<sup>+</sup>-induced apoptosis, and preventing the rupture of the mitochondrial membrane. However, the lack of low solubility and poor bioavailability reduce the therapeutic efficacy of <i>S.wightii</i>. Liposome-based drug delivery systems can improve the bioavailability and stability of bioactive compounds, enhancing their therapeutic potential. Hence, <i>S.wightii</i> may hold promise as an innovative treatment for neurological ailments.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"22"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoformulated phytochemicals in skin anti-aging research: an updated mini review. 纳米配方植物化学物质在皮肤抗衰老研究中的应用:最新综述。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2025-01-03 DOI: 10.1007/s13205-024-04197-y
Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul
{"title":"Nanoformulated phytochemicals in skin anti-aging research: an updated mini review.","authors":"Andrea G Uriostegui-Pena, Andrea Torres-Copado, Adriana Ochoa-Sanchez, Gabriel Luna-Bárcenas, Padmavati Sahare, Sujay Paul","doi":"10.1007/s13205-024-04197-y","DOIUrl":"10.1007/s13205-024-04197-y","url":null,"abstract":"<p><p>Skin aging is characterized by progressive loss of functionality and regenerative potential of the skin, resulting in the appearance of wrinkles, irregular pigmentation, a decrease of elasticity, dryness, and rough texture. Damage to the skin caused by oxidative stress could substantially be slowed down by the use of phytochemicals that function as natural antioxidants. Although phytochemicals have immense potential as anti-aging medicines, their effectiveness as therapeutic agents is restricted by their poor solubility, biodistribution, stability, and hydrophilicity. Given their improved stability, solubility, efficacy, and occlusive properties, nanoformulations have emerged as promising drug delivery platforms for phytochemicals to achieve anti-aging effects. The efficacy of these nanoformulated phytochemicals in suppressing enzymes that accelerate skin aging, such as collagenase, tyrosinase and hyaluronidase, as well as enhancing superoxide dismutase, catalase, and collagen levels to improve skin appearance during aging has been demonstrated.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"31"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications. 三阴性乳腺癌的分子异质性和MYC失调:基因组学进展和治疗意义。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2025-01-05 DOI: 10.1007/s13205-024-04195-0
Priya, Arun Kumar, Dhruv Kumar
{"title":"Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications.","authors":"Priya, Arun Kumar, Dhruv Kumar","doi":"10.1007/s13205-024-04195-0","DOIUrl":"10.1007/s13205-024-04195-0","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"33"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural characterization, in-silico studies, and antifungal activity of 5-methylmellein isolated from endophytic Alternaria burnsii. 内生褐孢霉5-甲基lein的结构表征、计算机研究及抗真菌活性研究。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI: 10.1007/s13205-024-04155-8
Vagish Dwibedi, Gulshan Kumar, Mohammad Khalid Al-Sadoon, Gursharan Kaur, Ashok Kumar, Nancy George, Mahavir Joshi, Rajinder Kaur, Palak Rana, Santosh Kumar Rath
{"title":"Structural characterization, in-silico studies, and antifungal activity of 5-methylmellein isolated from endophytic <i>Alternaria burnsii</i>.","authors":"Vagish Dwibedi, Gulshan Kumar, Mohammad Khalid Al-Sadoon, Gursharan Kaur, Ashok Kumar, Nancy George, Mahavir Joshi, Rajinder Kaur, Palak Rana, Santosh Kumar Rath","doi":"10.1007/s13205-024-04155-8","DOIUrl":"10.1007/s13205-024-04155-8","url":null,"abstract":"<p><p>The present investigation focused on exploring the potential of fungal endophytes as a valuable source of bioactive compounds with diverse applications. The phenolic compound 5-methylmellein was isolated for the first time from <i>Alternaria burnsii</i>, an endophytic fungus associated with <i>Morus alba</i> Linn. The compounds were structurally characterized using comprehensive spectral analysis, including <sup>1</sup>H-, <sup>13</sup>C, and 2D-NMR, as well as HRESI-MS. The study investigated the antifungal activity of 5-methylmellein against several plant pathogenic fungi, including <i>Botrytis cinerea</i>, <i>Colletotrichum gloeosporioides</i>, <i>Cercospora beticola</i>, and <i>Rhizoctonia solani</i>. In vitro assays showed significant inhibition of various plant pathogenic fungi, and the IC<sub>50</sub> values ranging from 34.59 ± 1.03<sup>a</sup> µg/mL to 44.76 ± 1.03<sup>b</sup> µg/mL against the tested fungi. In vivo experiments on apples and grapes revealed that 5-Methylmellein significantly reduced fruit decay caused by <i>Botrytis cinerea</i>. The wound incidence in the control group reached 95.78%, while the treated groups exhibited a reduction of 37.54% after 15 days. These findings underscore the potential of 5-methylmellein as a potent antifungal agent, suggesting its eco-friendly application in agriculture for managing fruit decay.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"1"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142779041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells. c-MET酪氨酸激酶抑制剂逆转由atp结合盒转运蛋白B1 (ABCB1)介导的癌细胞耐药。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-04 DOI: 10.1007/s13205-024-04162-9
Somayeh Nazari, Alireza Poustforoosh, Priyanka Rani Paul, Ritushree Kukreti, Marjan Tavakkoli, Luciano Saso, Omidreza Firuzi, Fatemeh Moosavi
{"title":"c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells.","authors":"Somayeh Nazari, Alireza Poustforoosh, Priyanka Rani Paul, Ritushree Kukreti, Marjan Tavakkoli, Luciano Saso, Omidreza Firuzi, Fatemeh Moosavi","doi":"10.1007/s13205-024-04162-9","DOIUrl":"10.1007/s13205-024-04162-9","url":null,"abstract":"<p><p>This study investigated the potential of MET kinase inhibitors, cabozantinib, crizotinib, and PHA665752, in reversing multidrug resistance (MDR) mediated by ABCB1 in cancer cells. The accumulation of the fluorescent probe, Rhodamine 123, was assessed using flow cytometry and fluorescence microscopy in MDR MES-SA/DX5 and parental cells. The growth inhibitory activity of MET inhibitors as monotherapies and in combination with chemotherapeutic drugs was evaluated by MTT assay. CalcuSyn software was used to analyze the combination index (CI) as an index of drug-drug interaction in combination treatments. Results showed that at concentrations of 5, and 25 μM, c-MET inhibitors significantly increased Rhodamine 123 accumulation in MDR cells, with ratios up to 17.8 compared to control cells, while exhibiting no effect in parental cells. Additionally, the combination of c-MET inhibitors with the chemotherapeutic agent doxorubicin synergistically enhanced cytotoxicity in MDR cells, as evidenced by combination index (CI) values of 0.54 ± 0.08, 0.69 ± 0.1, and 0.85 ± 0.07 for cabozantinib, crizotinib, and PHA665752, respectively. While all three c-MET inhibitors stimulated ABCB1 ATPase activity in different manners at certain concentrations, PHA-665752 suppressed it at high concentration. In silico analysis also suggested that the transmembrane domains (TMD) of ABCB1 transporters could be considered potential target for these agents. Our results suggest that c-MET inhibitors can serve as promising MDR reversal agents in ABCB1-medicated drug-resistant cancer cells.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"2"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618280/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of KLF5 targets RREB1 to restrain the proliferation of ovarian cancer cells through ERK/MAPK signaling pathway. 抑制KLF5通过ERK/MAPK信号通路靶向RREB1抑制卵巢癌细胞增殖。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-11 DOI: 10.1007/s13205-024-04171-8
Shenglan Wang, Chuanchuan Liu, Yongchuan Li, Jinwan Qiao, Xinling Chen, Jin Bao, Ran Li, Yanxia Xing
{"title":"Suppression of KLF5 targets RREB1 to restrain the proliferation of ovarian cancer cells through ERK/MAPK signaling pathway.","authors":"Shenglan Wang, Chuanchuan Liu, Yongchuan Li, Jinwan Qiao, Xinling Chen, Jin Bao, Ran Li, Yanxia Xing","doi":"10.1007/s13205-024-04171-8","DOIUrl":"10.1007/s13205-024-04171-8","url":null,"abstract":"<p><p>The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR. Then, NC-siRNA or KLF5-siRNA was transfected into SK-OV-3 and OVCAR-3 cells. RT-qPCR and WB were used to detect the efficiency of KLF5 silence, CCK-8, colony formation assay, IHC staining, flow cytometry, and WB were performed to investigate the KLF5 function on OC cell proliferation and the activation of the extracellular signal-regulated Kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway. Next, a dual-luciferase and IF assay were used to determine the relationship between KLF5 and the Ras response element-binding protein (RREB1). SK-OV-3 and OVCAR-3 cells were treated with KLF5-siRNA and C16-PAF + EGF (MAPK agonist), separately or in combination. Proteins including KLF5, RREB1, p-p38, p-ERK1/2, ERK5, p-ERK5, Cyclin D1, CDK4, and CDK6 were quantified by WB. Finally, CCK-8, colony formation assay, and flow cytometry were employed again. KLF5 is highly expressed in OC cells compared with normal cells. When KLF5 knockdowns in SK-OV-3 and OVCAR-3 cells, the cell proliferation restrains, and the G1 phase prolongs. In addition, KLF5 silence caused a decrease of Cyclin D1, CDK4, CDK6, p-p38, p-ERK1/2, and p-ERK5/ERK5 expression levels. However, these statuses could be revised by C16-PAF + EGF. Results also found that when the ERK/MAPK signaling is activating, RREB1 is expressed low. The KLF5 silence could up-regulate the RREB1 expression. The KLF5 silence could restrain the OC cell proliferation and cell cycle. KLF5-siRNA may target upregulating RREB1 expression, thereby inhibiting the activation of the ERK/MAPK signaling pathway in OC cells.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"4"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635078/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile preparation of polyethyleneimine-conjugated silver sulfide nanoparticles as near-infrared-responsive to sterilization of multidrug resistant uropathogens, and cytotoxicity activity. 聚乙烯亚胺偶联硫化银纳米粒子的制备及其对多药耐药尿路病原体的近红外杀菌反应及细胞毒性活性。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1007/s13205-024-04168-3
Hind A Al-Shwaiman, Rustem R Zairov, Alexey P Dovzhenko, Asad Syed, Manjula Subramaniam, Ling Shing Wong, Baadal Jushi Janani
{"title":"Facile preparation of polyethyleneimine-conjugated silver sulfide nanoparticles as near-infrared-responsive to sterilization of multidrug resistant uropathogens, and cytotoxicity activity.","authors":"Hind A Al-Shwaiman, Rustem R Zairov, Alexey P Dovzhenko, Asad Syed, Manjula Subramaniam, Ling Shing Wong, Baadal Jushi Janani","doi":"10.1007/s13205-024-04168-3","DOIUrl":"10.1007/s13205-024-04168-3","url":null,"abstract":"<p><p>We present the chemical synthesis of polyethyleneimine-conjugated silver sulfide nanoparticles (PEI/AS) utilizing an economical solvothermal synthesis method, aimed at developing effective alternative antibacterial agents. The antibacterial efficacy of the synthesized materials, both with and without the application of near-infrared (NIR) laser irradiation, was evaluated in vitro against two distinct clinically relevant multi-drug-resistant (MDR) uropathogenic strains: <i>Escherichia coli</i> and <i>methicillin-resistant Staphylococcus aureus</i>. The bactericidal effects induced by NIR light indicate that the PEI/AS nanoparticles possess an efficiency that is five times greater than that of Ag<sub>2</sub>S alone. A suggested antibacterial mechanism posits that the wrapping of PEI increases electrostatic interactions, thereby facilitating the attachment of Ag<sub>2</sub>S nanoparticles to the bacterial surface. This process leads to the disruption of the outer membrane through the generation of localized heat and an increased concentration of reactive oxygen species (ROS), including superoxide anions (·O<sub>2</sub> <sup>-</sup>) and hydroxyl radicals (·OH). In addition, the mechanism involves the regulated release of Ag<sup>+</sup> ions when exposed to NIR light irradiation. The combined action led to an over 95.79% elimination of bacteria at a concentration as low as 50 μg mL<sup>-1</sup>, which can be primarily ascribed to the regulated photothermal effect induced by 808 nm near-infrared light irradiation, demonstrating exceptional photothermal conversion efficiency. These results paves a way for manufacturing innovation in future.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04168-3.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"8"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638448/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic exploration of Surfactin-capped silver nanoparticles: bioinformatics insights, antibacterial potency, and anticancer activity. 表面素覆盖银纳米粒子的协同探索:生物信息学见解,抗菌效力和抗癌活性。
IF 2.6 4区 生物学
3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1007/s13205-024-04174-5
Vivek Chauhan, Akash Pandey, Gaytri Mahajan, Vivek Dhiman, Shamsher S Kanwar
{"title":"Synergistic exploration of Surfactin-capped silver nanoparticles: bioinformatics insights, antibacterial potency, and anticancer activity.","authors":"Vivek Chauhan, Akash Pandey, Gaytri Mahajan, Vivek Dhiman, Shamsher S Kanwar","doi":"10.1007/s13205-024-04174-5","DOIUrl":"10.1007/s13205-024-04174-5","url":null,"abstract":"<p><p>Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from <i>Bacillus subtilis</i> KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity. The Surfactin-capped AgNPs demonstrated enhanced stability, uniformity, and antimicrobial efficacy, confirmed through UV-VIS spectroscopy, FE-SEM, and X-ray diffraction analysis. The bioinformatics approach, including ADMET and PASS analysis, revealed the potential of Surfactin as a potent antimicrobial and anticancer agent. In addition, molecular docking studies further validated the interaction of Surfactin with key microbial cell-wall enzymes and proteins, underscoring its therapeutic potential. These findings suggest that Surfactin-stabilized AgNPs, combined with bioinformatic predictions, could pave the way for innovative antimicrobial and anticancer therapies.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"13"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信