Construction of engineered Saccharomyces cerevisiae for producing phytosphingosine.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
3 Biotech Pub Date : 2025-08-01 Epub Date: 2025-07-08 DOI:10.1007/s13205-025-04417-z
Siyan Qiu, Jingru Li, Pengtian Xie, Chun Wei, Jie Sun
{"title":"Construction of engineered <i>Saccharomyces cerevisiae</i> for producing phytosphingosine.","authors":"Siyan Qiu, Jingru Li, Pengtian Xie, Chun Wei, Jie Sun","doi":"10.1007/s13205-025-04417-z","DOIUrl":null,"url":null,"abstract":"<p><p>Phytosphingosine (PHS), a sphingolipid-derived bioactive compound, exhibits multifunctional properties including antimicrobial activity, skin moisturization, and hydration, rendering it highly valuable for cosmetic and pharmaceutical applications. Through systematic metabolic engineering of <i>Saccharomyces cerevisiae</i>, we achieved 82.62 mg/g DCW phytosphingosine (PHS) production via integrated pathway optimization and stress mitigation. Key strategies involved: (1) Knockout of <i>LCB4</i> (sphingoid long-chain base kinase), <i>SHM2</i> (serine hydroxymethyltransferase), and <i>CHA1</i> (l-serine deaminase) to block competitive pathways; (2) Overexpression of <i>TSC10</i> (3-ketosphingosine reductase), <i>SYR2</i> (sphingosine hydroxylase), and <i>LCB1/LCB2</i> (serine palmitoyltransferase) to amplify the PHS synthesis flux. Initial shake flask fermentation (96 h) yielded 15.31 mg/g DCW of PHS, with <i>ORM2</i> knockout providing a 73.6% productivity increase (26.54 mg/g DCW) despite inducing growth defects from sphingosine accumulation. We hypothesized that disrupted ORM2-mediated control of serine palmitoyltransferase activity might compromise ER homeostasis through sphingolipid imbalance, which was alleviated through <i>HAC1</i> overexpression to enhance unfolded protein response (UPR) capacity. Fed-batch fermentation under optimized conditions (40 mM serine, 0.5 mM palmitic acid, pH 5) demonstrated scalable production, delivering a 5.4-fold improvement over baseline. This work establishes UPR engineering as a critical strategy for resolving lipid toxicity constraints in yeast sphingolipid biosynthesis, while highlighting <i>S. cerevisiae</i>'s potential as an industrial PHS production platform through coordinated pathway and stress response manipulation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-025-04417-z.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 8","pages":"247"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04417-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phytosphingosine (PHS), a sphingolipid-derived bioactive compound, exhibits multifunctional properties including antimicrobial activity, skin moisturization, and hydration, rendering it highly valuable for cosmetic and pharmaceutical applications. Through systematic metabolic engineering of Saccharomyces cerevisiae, we achieved 82.62 mg/g DCW phytosphingosine (PHS) production via integrated pathway optimization and stress mitigation. Key strategies involved: (1) Knockout of LCB4 (sphingoid long-chain base kinase), SHM2 (serine hydroxymethyltransferase), and CHA1 (l-serine deaminase) to block competitive pathways; (2) Overexpression of TSC10 (3-ketosphingosine reductase), SYR2 (sphingosine hydroxylase), and LCB1/LCB2 (serine palmitoyltransferase) to amplify the PHS synthesis flux. Initial shake flask fermentation (96 h) yielded 15.31 mg/g DCW of PHS, with ORM2 knockout providing a 73.6% productivity increase (26.54 mg/g DCW) despite inducing growth defects from sphingosine accumulation. We hypothesized that disrupted ORM2-mediated control of serine palmitoyltransferase activity might compromise ER homeostasis through sphingolipid imbalance, which was alleviated through HAC1 overexpression to enhance unfolded protein response (UPR) capacity. Fed-batch fermentation under optimized conditions (40 mM serine, 0.5 mM palmitic acid, pH 5) demonstrated scalable production, delivering a 5.4-fold improvement over baseline. This work establishes UPR engineering as a critical strategy for resolving lipid toxicity constraints in yeast sphingolipid biosynthesis, while highlighting S. cerevisiae's potential as an industrial PHS production platform through coordinated pathway and stress response manipulation.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-025-04417-z.

生产植物鞘氨醇的工程酿酒酵母的构建。
鞘磷脂(PHS)是鞘脂衍生的生物活性化合物,具有抗菌、保湿、补水等多种功能,在化妆品和制药领域具有很高的应用价值。通过对酿酒酵母进行系统代谢工程,通过整合途径优化和胁迫缓解,实现了82.62 mg/g DCW的植物鞘氨醇(PHS)产量。涉及的关键策略:(1)敲除LCB4(鞘长链碱基激酶)、SHM2(丝氨酸羟甲基转移酶)和CHA1 (l-丝氨酸脱氨酶)以阻断竞争途径;(2)过表达TSC10(3-酮鞘氨醇还原酶)、SYR2(鞘氨醇羟化酶)和LCB1/LCB2(丝氨酸棕榈酰基转移酶),放大PHS合成通量。摇瓶初始发酵(96 h)产生了15.31 mg/g DCW的PHS,敲除ORM2后,尽管会引起鞘氨醇积累的生长缺陷,但PHS的生产率提高了73.6% (26.54 mg/g DCW)。我们假设orm2介导的丝氨酸棕榈酰基转移酶活性的破坏可能通过鞘脂失衡破坏内质网稳态,而这种失衡通过HAC1过表达增强未折叠蛋白反应(UPR)能力而得到缓解。在优化条件下(40 mM丝氨酸,0.5 mM棕榈酸,pH 5)的补料分批发酵证明了可扩展的生产,比基线提高了5.4倍。这项工作确立了UPR工程作为解决酵母鞘脂生物合成中脂质毒性限制的关键策略,同时强调了酿酒酵母通过协调途径和应激反应操纵作为工业小PHS生产平台的潜力。补充资料:在线版本包含补充资料,下载地址:10.1007/s13205-025-04417-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信