Acta Physiologiae Plantarum最新文献

筛选
英文 中文
The effect of exogenous N-acetylcysteine on the phenolic profile and antioxidant enzyme activities in two betalainic red beet (Beta vulgaris L.) leaves under salt stress 外源 N-乙酰半胱氨酸对盐胁迫下两种甜菜叶中酚类物质和抗氧化酶活性的影响
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-10-05 DOI: 10.1007/s11738-024-03713-0
Nesrin Colak
{"title":"The effect of exogenous N-acetylcysteine on the phenolic profile and antioxidant enzyme activities in two betalainic red beet (Beta vulgaris L.) leaves under salt stress","authors":"Nesrin Colak","doi":"10.1007/s11738-024-03713-0","DOIUrl":"10.1007/s11738-024-03713-0","url":null,"abstract":"<div><p>Salinity stress adversely affects plant growth and development and causes other stresses, such as osmotic and oxidative stress. Salt-tolerant crops capable of inhabiting salty agricultural land will be useful for farming. Red beet (<i>Beta vulgaris</i> L.) is an economically important plant for high salt tolerance, and also contain rich in valuable ingredients including betacyanins, vitamin, antioxidant, and minerals. Exogenous treatment of chemical components facilitates the improvement of crop productivity under salt stress. N-acetyl-L-cysteine (NAC) derived from cysteine amino acid is a precursor of thiol compounds, an antioxidant, and a chelating agent. The 45-day red beets (<i>Beta vulgaris</i> ‘Scarlet Supreme’, <i>B. vulgaris</i> var. <i>crassa</i> ‘Ruby Queen’) were subjected to three NAC levels (100, 250, and 500 µM) and one salinity level (150 mM NaCl) for 1 week to determine the effect of applications on enzymatic and non-enzymatic antioxidant defense systems by comparing two red beets leaf extracts. NAC treatment in combination with NaCl induced an increase in total phenolic content (TPC), total flavonoid (TF), total betalain, and phenolic acid contents in ‘Ruby Queen’, while these contents decreased under the same conditions in ‘Scarlet Supreme’. The antioxidant capacity values were significantly correlated (P &lt; 0.01) with the TPC content in both red beets. In addition, combination treatment stimulated the activity of some of the antioxidant enzymes in comparison to salt stress alone. The GSH content in the red beets was also enhanced by the combination treatments. Furthermore, TBARS values were negatively correlated with GSH or some AsA–GSH cycle enzyme activities and to some extent with POX activity in the leaves of red beets. These results suggest that NAC treatment alleviated many of the deleterious effects of salt stress in beet leaves, which was achieved by enhancing antioxidant defense system-modulating enzymatic and non-enzymatic antioxidant components.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 9","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of exogenous calcium on Bermuda grass under simultaneous stress of cadmium and acid rain 外源钙对同时受到镉和酸雨胁迫的百慕大草的影响
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-10-04 DOI: 10.1007/s11738-024-03715-y
Shuduan Tan, Tongtong Hua, Hongbing Yu, Xiaomei Zhou
{"title":"Effects of exogenous calcium on Bermuda grass under simultaneous stress of cadmium and acid rain","authors":"Shuduan Tan,&nbsp;Tongtong Hua,&nbsp;Hongbing Yu,&nbsp;Xiaomei Zhou","doi":"10.1007/s11738-024-03715-y","DOIUrl":"10.1007/s11738-024-03715-y","url":null,"abstract":"<div><p>Acid rain and heavy metal cadmium (Cd) pollution are global environmental problems affecting plants. Plant priming with calcium (Ca) alleviates various environmental stresses. However, the mitigation effect of exogenous Ca on Bermuda grass has not been evaluated under the dual stress of Cd and acid rain. This research was designed to explore the effect of 5 mmol/L Ca on the growth of Bermuda grass seedlings under the combined stress. The results showed that exogenous Ca improved the growth indicators including root length, plant height, stem length, leaf length, root dry weight, stem dry weight, leaf dry weight and total dry weight, reduced the MDA content, and increased the relative chlorophyll content, SOD, POD and CAT activity, and N, P, K contents in different organs. The alleviating effect of exogenous Ca was be limited by acid rain intensity. Exogenous Ca had a significant alleviating effect on plants under combined stress of Cd and pH4.5 acid rain, and promoted the Cd uptake in plants. This research provided a scientific basis for further understanding the positive effects of exogenous Ca on plant growth under the combined stress of Cd and acid rain, and phytoremediation of soil Cd pollution in acid rain areas.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 9","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleotide metabolism in common bean pods during seed filling phase reveals the essential role of seed coats 种子充实期普通豆荚中的核苷酸代谢揭示了种皮的重要作用
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-09-06 DOI: 10.1007/s11738-024-03704-1
Mercedes Díaz-Baena, Elena Delgado-García, Inés G. deRave-Prieto, Gregorio Gálvez-Valdivieso, Pedro Piedras
{"title":"Nucleotide metabolism in common bean pods during seed filling phase reveals the essential role of seed coats","authors":"Mercedes Díaz-Baena,&nbsp;Elena Delgado-García,&nbsp;Inés G. deRave-Prieto,&nbsp;Gregorio Gálvez-Valdivieso,&nbsp;Pedro Piedras","doi":"10.1007/s11738-024-03704-1","DOIUrl":"10.1007/s11738-024-03704-1","url":null,"abstract":"<div><p>Common bean is a legume with high demand for human consumption and with high protein content on its seeds. The seed filling stage is a crucial step to obtain high-quality seeds with a good level of nutrients. For this, it is necessary for a correct communication between the different seed compartments. Nucleotides are essential components with nitrogen and phosphorous on its molecules, and its metabolism in seed development has not been studied in detail. In this manuscript, we have studied nucleotide metabolism in common bean pods during seed filling stage at pod valves, seed coats, and embryos. Nuclease and ribonuclease activities were assayed as nucleotide-generating enzymes, and nucleotidase, nucleosidase, and allantoinase as nucleotide-degrading activities. Nuclease was predominant in seed coats whereas ribonuclease was equally determined in seed coats and valves, although with differences in the three ribonucleases determined (16, 17, and 19 kDa). Nucleotidase and nucleosidase activities were detected in the three pods parts, and differently to nucleic degrading activities with significant activity in embryos. The relative expression of gene families coding for all these activities (S1 nuclease, S-like T2 ribonuclease, nucleotidase, nucleosidase and allantoinase) in the three pods parts was also studied. We have found the highest level of expression for some members of each family in seed coats. The allantoinase data suggest that nucleotide might be fully degraded in valves and seed coats but not in embryos. Overall, the data presented allow to conclude that there is an intense nucleotide metabolism in fruits during the seed filling stage with an especial involvement of seed coats in the process.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 8","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11738-024-03704-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic control of important yield attributing characters predicted through machine learning in segregating generations of interspecific crosses of tomato (Solanum lycopersicum L.) 通过机器学习预测番茄(Solanum lycopersicum L.)种间杂交分离世代重要产量属性特征的遗传控制
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-09-04 DOI: 10.1007/s11738-024-03702-3
Brati Acharya, P. Pradeep Kumar, Soham Hazra, Subhramalya Dutta, Subhrajyoti Saha, Sourav Roy, Anirban Maji, Ivi Chakraborty, Arup Chattopadhyay, Pranab Hazra
{"title":"Genetic control of important yield attributing characters predicted through machine learning in segregating generations of interspecific crosses of tomato (Solanum lycopersicum L.)","authors":"Brati Acharya,&nbsp;P. Pradeep Kumar,&nbsp;Soham Hazra,&nbsp;Subhramalya Dutta,&nbsp;Subhrajyoti Saha,&nbsp;Sourav Roy,&nbsp;Anirban Maji,&nbsp;Ivi Chakraborty,&nbsp;Arup Chattopadhyay,&nbsp;Pranab Hazra","doi":"10.1007/s11738-024-03702-3","DOIUrl":"10.1007/s11738-024-03702-3","url":null,"abstract":"<div><p>Skewness and kurtosis were analysed using mean data from the F<sub>2</sub> to F<sub>5</sub> generations of three interspecific tomato hybrids, incorporating two feral species: <i>Solanum pimpinellifolium</i> (Currant Tomato) and <i>Solanum lycopersicum</i> var. cerasiformae (Cherry Tomato). The study cantered on three crucial traits impacting fruit yield, with predictions generated through artificial neural networks and multiple linear regression. Plant height (PH), fruit weight (FW) and test weight of seeds (TSW) were identified as the most sensitive traits influencing fruit yield/plant in the Alisa Craig Aft × <i>Solanum pimpinellifolium</i> (Cross 1) and the Berika × <i>Solanum lycopersicum</i> var. <i>cerasiformae</i> (Cross 2). In contrast, fruits per plant (FPP), FW and TSW emerged as the key contributors to fruit yield in the BCT 115 dg × <i>Solanum lycopersicum</i> var. <i>cerasiformae</i> (Cross 3). Skewness and kurtosis distribution suggested complementary gene action with fewer number of segregating genes for PH in Cross 1, FW across all three cross combinations, TSW in Cross 1, and FPP in Cross 3. Duplicate gene action with fewer genes could be predicted for TSW in Cross 2 and Cross 3 while complementary gene action and a greater number of segregating genes were suggested for PH in Cross 2. Moderate-to-high narrow sense heritability was determined for all the characters suggesting phenotypic selection to be rewarding. Isolation of seven promising segregates based on the important yield attributers from three inter-specific hybrids in F<sub>5</sub> generation established the worth of advancing interspecific hybrids. This distinctive and novel breeding method offers exceptional potential for isolating superior tomato segregates through a targeted interspecific breeding programme.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 8","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scanning electron microscopy reveals contrasting effects of liquid nitrogen on seeds of legumes Neonotonia wightii, Phaseolus vulgaris and Tamarindus indica 扫描电子显微镜揭示液氮对豆科植物 Neonotonia wightii、Phaseolus vulgaris 和 Tamarindus indica 种子的不同影响
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-09-02 DOI: 10.1007/s11738-024-03703-2
Yanier Acosta, Barbarita Companioni, Doris Escalante, Byron E. Zevallos–Bravo, Lisbet Pérez-Bonachea, Pawel Chmielarz, Elliosha Hajari, Christoph Neinhuis, Michael Melzer, José Carlos Lorenzo
{"title":"Scanning electron microscopy reveals contrasting effects of liquid nitrogen on seeds of legumes Neonotonia wightii, Phaseolus vulgaris and Tamarindus indica","authors":"Yanier Acosta,&nbsp;Barbarita Companioni,&nbsp;Doris Escalante,&nbsp;Byron E. Zevallos–Bravo,&nbsp;Lisbet Pérez-Bonachea,&nbsp;Pawel Chmielarz,&nbsp;Elliosha Hajari,&nbsp;Christoph Neinhuis,&nbsp;Michael Melzer,&nbsp;José Carlos Lorenzo","doi":"10.1007/s11738-024-03703-2","DOIUrl":"10.1007/s11738-024-03703-2","url":null,"abstract":"<div><p>Cryopreservation remains the technology of choice for the long-term preservation of plant germplasm. The current contribution reports on the response of seeds of <i>N. wightii</i>, <i>P. vulgaris</i> and <i>T</i><i>. indica</i> to cryopreservation in terms of plantlet survival post cryostorage as well as examination of the external morphology of seed coats using scanning electron microscopy (SEM). Survival was determined in Petri dishes in the laboratory as well as in the soil. The results showed differential responses in seeds of the three tested species. In the case of <i>P. vulgaris</i>, exposure to liquid nitrogen (LN) did not adversely affect seedling emergence or characteristics of the seed coat. For <i>N. wightii</i> and <i>T. indica</i>, cracks in the seed coat that were apparent in control seeds, appeared more frequently following exposure to LN. In the case of the former species, this observation did not yield adverse consequences and seed germination rate did actually increase from 5.8 to 85.9% after LN treatment. However, in the case of <i>T. indica</i>, the initial growth rate of seedlings was delayed relative to the control although the germination rate was improved. It is postulated that seeds of <i>T. indica</i> possibly incurred additional damage to other seed components which might have led to delayed recovery.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 8","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition 将蛭肥和有效微生物相结合的新型生态友好方法通过调节光合作用和养分获取来维持小麦(Triticum aestivum L.)的耐旱性
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-09-02 DOI: 10.1007/s11738-024-03698-w
Neveen B. Talaat, Sameh A. M. Abdel-Salam
{"title":"A novel eco-friendly approach of combining vermicompost and effective microorganisms sustains wheat (Triticum aestivum L.) drought tolerance by modulating photosynthetic performance and nutrient acquisition","authors":"Neveen B. Talaat,&nbsp;Sameh A. M. Abdel-Salam","doi":"10.1007/s11738-024-03698-w","DOIUrl":"10.1007/s11738-024-03698-w","url":null,"abstract":"<div><p>The most significant threat to global food security is water scarcity. Despite the fact that vermicompost (an effective organic fertilizer rich in humic substances, macro- and micro-nutrients, earthworm excretions, beneficial soil microbes, plant growth hormones, enzymes) and effective microorganisms (EM; photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, fermenting fungi) have been recognized as powerful strategies for alleviating environmental stresses, their combined effect has not been studied. Herein, as a first investigation, we aimed to enhance wheat’s drought tolerance using an eco-friendly approach that combined vermicompost and EM. The study employed twelve treatments in a completely randomized design. The treatments included control, as well as single and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). Vermicompost and EM, applied singly or in combination, ameliorated drought-induced reduction in wheat growth and productivity by elevating photosynthetic pigment content, photochemical processes, Calvin cycle enzyme activity, net photosynthetic rate, transpiration rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry, actual photochemical efficiency of PSII, electron transport rate, photochemical quenching coefficient, and effective quantum yield of PSII photochemistry. Additionally, adding vermicompost and/or EM improved wheat drought tolerance by increasing nutrient (nitrogen, phosphorus, potassium, iron, zinc, copper) acquisition, roots’ ATP content, H<sup>+</sup>-pump activity, and membrane stability index while lowering hydrogen peroxide content, lipid peroxidation, and electrolyte leakage. The new evidence demonstrates that combining vermicompost with EM sustains wheat drought tolerance by regulating photosynthetic efficiency, nutrient acquisition, root H<sup>+</sup>-pump activity, and membrane stability. Overall, utilizing vermicompost/EM is a novel approach to improving plant physiological responses and overcoming drought-related challenges.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 8","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11738-024-03698-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variation in nonstructural carbohydrates and antioxidant metabolism in wheat leaf and spike under changing CO2 and nitrogen supply 二氧化碳和氮供应变化下小麦叶片和穗的非结构性碳水化合物及抗氧化代谢的变化
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-08-19 DOI: 10.1007/s11738-024-03695-z
Aneela Ulfat, Ali Aslam, Ansar Mehmood, Ambreen Wazarat
{"title":"Variation in nonstructural carbohydrates and antioxidant metabolism in wheat leaf and spike under changing CO2 and nitrogen supply","authors":"Aneela Ulfat,&nbsp;Ali Aslam,&nbsp;Ansar Mehmood,&nbsp;Ambreen Wazarat","doi":"10.1007/s11738-024-03695-z","DOIUrl":"10.1007/s11738-024-03695-z","url":null,"abstract":"<div><p>Nonstructural carbohydrates and antioxidants affect the yield of any plant. In this study, changes in nonstructural carbohydrates and antioxidant metabolism in leaf and spike, as well as their effects on grain yield, were examined in relation to elevated CO<sub>2</sub> and nitrogen supply. For this, a wheat (<i>Triticum aestivum</i>) was grown at two levels of CO<sub>2</sub>, i.e., ambient 400 ppm (T1) and elevated 800 ppm (T2), with two levels of nitrogen supply, i.e., 0 gN (N1) and 1 gN (N2). In the sink, elevated CO<sub>2</sub> and nitrogen caused a several-fold increase in glucose content. Fructose showed an increase of 53% and 60% in N<sub>2</sub> treatment under both carbon levels. At the same time, sucrose content decreased by 112% and 100% with an increase in nitrogen doses under 400 ppm and 800 ppm. Higher N decreased the superoxide dismutase activity at ambient CO<sub>2</sub>, while higher N at elevated carbon levels increased the superoxide dismutase activity. Elevated CO<sub>2</sub> decreased the catalase activity, while the peroxidases activity increased. In the spike, catalase activity increased at a higher N level. Grain yield was significantly enhanced at elevated CO<sub>2</sub>. The correlation analysis showed that catalase has a strong positive correlation with grain yield. The changes in nonstructural carbohydrates and antioxidant enzyme activities are associated with the altered leaf-spike relationship under N availability at high CO<sub>2</sub> levels, which could be a key factor contributing to variable yield. Differential response of nonstructural carbohydrates and antioxidant enzymes in leaf and spike is responsible for changes in grain yield.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 7","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive responses of Alternanthera tenella Colla. to cadmium stress through physiology, elemental allocation and morpho-anatomical modifications 通过生理学、元素分配和形态解剖学改变对镉胁迫的Alternanthera tenella Colla.适应性反应
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-08-16 DOI: 10.1007/s11738-024-03700-5
Firdous Kottakunnu Abdulrahman, Vivek Padmanabhan Jayanthikumari, Neethu Kizhekkepurath, Resmi Mohankumar Saraladevi
{"title":"Adaptive responses of Alternanthera tenella Colla. to cadmium stress through physiology, elemental allocation and morpho-anatomical modifications","authors":"Firdous Kottakunnu Abdulrahman,&nbsp;Vivek Padmanabhan Jayanthikumari,&nbsp;Neethu Kizhekkepurath,&nbsp;Resmi Mohankumar Saraladevi","doi":"10.1007/s11738-024-03700-5","DOIUrl":"10.1007/s11738-024-03700-5","url":null,"abstract":"<div><p>Industrialization has accelerated the rate of heavy metal discharge into the environment and among trace metals, cadmium (Cd) gains attention due to its relative mobility from soil to plant and potential toxicity to humans. Phytoremediation is a plant-based, cost-effective approach to remediate the contaminated soil and water, and an attempt has been made in the present study to explore the potential of an invasive plant <i>Alternanthera tenella</i> for Cd removal. The physiological and morpho-anatomical modifications of plant tissues including the elemental allocation pattern and bioaccumulation potential were studied in response to 170 µM of Cd(NO<sub>3</sub>)<sub>2</sub>. Cd negatively affects the growth parameters, biomass, and photosynthetic efficacy of the plant. Cd treatment influenced the distribution of macro and microelements in the plant and the structural moieties in the biomolecules on the interaction of metal ions. Anatomical modifications included the alterations in the diameter and thickness of cell walls, especially xylem walls, the presence of cell structural distortions and blockage, and fully opened stomata with thick guard cells and depositions. Metabolites like proline, flavonoids, phenol, and malondialdehyde marked a significant increase in stress tolerance. Despite having a relatively low transfer factor (TF), <i>A. tenella</i> exhibits high values of biological concentration factor (BCF) and biological accumulation factor (BAF), suggesting its suitability for phytostabilization of Cd-contaminated environments.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 7","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional characterization and comparative analysis of AtMYB42 and AtMYB85 promoters to gain insights into transcriptional regulation during development and hormonal induction 对 AtMYB42 和 AtMYB85 启动子进行功能表征和比较分析,以深入了解发育和激素诱导过程中的转录调控
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-08-10 DOI: 10.1007/s11738-024-03701-4
Shobha Yadav, Richa Shukla, Ekta Pokhriyal, Sandip Das
{"title":"Functional characterization and comparative analysis of AtMYB42 and AtMYB85 promoters to gain insights into transcriptional regulation during development and hormonal induction","authors":"Shobha Yadav,&nbsp;Richa Shukla,&nbsp;Ekta Pokhriyal,&nbsp;Sandip Das","doi":"10.1007/s11738-024-03701-4","DOIUrl":"10.1007/s11738-024-03701-4","url":null,"abstract":"<div><p>The present study was designed to functionally characterize the promoters associated with <i>At</i>MYB42, <i>At</i>MYB85, and <i>Bju</i>MYB85. These genes are well known to be involved in lignin synthesis via phenylpropanoids, which are crucial for secondary cell wall development. We previously reported the complete absence of homologs of MYB42 from <i>Brassica</i> species. Inspite of their known role in secondary cell wall development, detailed knowledge about <i>cis</i>-element and transcriptional regulation of <i>At</i>MYB42, <i>At</i>MYB85 and <i>BjMYB85</i> (<i>BjuA013029</i>) is lacking. It is therefore crucial investigating the transcriptional regulation of <i>At</i>MYB42, <i>At</i>MYB85, and <i>BjMYB85</i> (<i>BjuA013029</i>), analyze functional and regulatory conservation and divergence and address whether <i>BjMYB85</i> potentially compensates for the absence of <i>MYB42</i> homologs in <i>Brassica</i>. In silico analysis revealed differences in the promoter sequences but shared transcription factor-binding sites and motifs, suggesting a common <i>cis</i>-regulatory pathway. Functional characterization using transcriptional fusion constructs revealed tissue-specific expression patterns not only in the stem, as has been reported earlier, but also in anther walls and siliques where lignin deposition plays an important role in dehiscence. Hormone and stress responsiveness of these promoters were assessed in seedlings. The <i>At</i>MYB42 promoter displayed greater responsiveness to ethylene, cytokinin, and salicylic acid compared to <i>At</i>MYB85 and <i>BjuA013029</i>MYB85. Expression was observed in various tissues, including seedlings, anthers, and silique and leaf midribs. This study provides novel insights into the expression patterns of these promoters, shedding light on their roles in non-stem tissues and contributing to our understanding of secondary cell wall formation.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 7","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sargassum tenerrimum extract reduces Sclerotium rolfsii stem rot disease in peanut by modulating physio-biochemical responses 马尾藻提取物通过调节生理生化反应减轻花生的茎腐病
IF 2.4 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2024-08-10 DOI: 10.1007/s11738-024-03697-x
Sureshkumar Mesara, Dhanvi D. Akhyani, Parinita Agarwal, Doddabhimappa R. Gangapur, Pradeep K. Agarwal
{"title":"Sargassum tenerrimum extract reduces Sclerotium rolfsii stem rot disease in peanut by modulating physio-biochemical responses","authors":"Sureshkumar Mesara,&nbsp;Dhanvi D. Akhyani,&nbsp;Parinita Agarwal,&nbsp;Doddabhimappa R. Gangapur,&nbsp;Pradeep K. Agarwal","doi":"10.1007/s11738-024-03697-x","DOIUrl":"10.1007/s11738-024-03697-x","url":null,"abstract":"<div><p>Peanut stem rot disease, caused by the necrotrophic soil-borne fungus <i>Sclerotium rolfsii</i>, has a significant negative impact on crop yields. Chemical fungicides can mitigate the loss incurred by fungus, however, their usage raises environmental and human health concern. Seaweeds extracts are getting importance as bio-stimulant for improving growth and disease resistance in different plants. In the present study, we investigated the potential of <i>Sargassum tenerrimum</i> extract (S-extract) in controlling stem rot disease in peanuts. The foliar application of S-extract was applied at vegetative and reproductive stages on peanut plants to study plant growth and reduction of <i>S. rolfsii</i>-induced disease. Plant height, number of branches and branch length increased in S-extract treated plants (S) as compared to S-extract + <i>S. rolfsii</i> treated plants (S + F). Similarly, the activity of anti-oxidative enzymes such as catalase (CAT), guaiacol peroxidase (GPOX), polyphenol oxidase (PPO), and superoxide dismutase (SOD) increased by application of S-extract. Pigments such as chlorophyll a, chlorophyll b, and carotenoids showed higher accumulation in S-extract treated plants. The increased membrane stability index and reduced electrolyte leakage in S and S + F plants, positively affected the health and biotic stress tolerance of the plants. S-extract reduced the reactive oxygen species (ROS) such as O<sub>2</sub><sup>•−</sup> and H<sub>2</sub>O<sub>2</sub>. Total phenol, soluble sugars and total amino acid accumulation were higher in S and S + F plants compared to C and F at vegetative stage. The mitigation of disease can be attributed to the application of S-extract leading to the elevated activity of antioxidant enzymes and the accumulation of non-enzymatic antioxidants, osmolytes, and pigments. Therefore, S-extract represents an environmentally friendly resource that can be employed in sustainable agriculture practices to boost plant growth and enhance disease tolerance.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 7","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信