水稻(Oryza sativa L.)品质性状相关数量性状位点的meta分析

IF 2.4 4区 生物学 Q2 PLANT SCIENCES
Nahid Feizi, Atefeh Sabouri, Amin Abedi, Adel Bakhshipour
{"title":"水稻(Oryza sativa L.)品质性状相关数量性状位点的meta分析","authors":"Nahid Feizi,&nbsp;Atefeh Sabouri,&nbsp;Amin Abedi,&nbsp;Adel Bakhshipour","doi":"10.1007/s11738-025-03780-x","DOIUrl":null,"url":null,"abstract":"<div><p>Rice grain quality is a crucial factor in determining its economic value. Numerous studies have identified quantitative trait loci (QTLs) associated with grain quality. However, to date, no meta-analysis of QTLs for rice cooking and eating quality traits has been reported. Therefore, we conducted a meta-analysis of QTLs to identify consensus QTLs located at the same locus across multiple studies, aiming to detect significant meta-QTLs (MQTLs) that can be targeted for marker-assisted selection (MAS) applications. In this study, 26 MQTLs were identified from 193 initial independent QTLs related to grain quality traits, including amylose content (AC), gel consistency (GC), and gelatinization temperature (GT). The substantial reduction in the confidence interval of the initial QTLs compared to the MQTLs (from 20.91 to 7.21 cM) led to the identification of both annotated and putative candidate genes associated with the traits. The highest number of MQTLs (eight) was found on chromosome 6. The phenotypic variance explained (<i>R</i><sup>2</sup>) by the MQTLs ranged from 2 to 51%, with an average of 19%. Out of the 561 candidate genes identified within the MQTLs, 461 had available expression data. Analysis of their expression patterns in various rice tissues showed that 181 genes had an expression value (FPKM) greater than 10 in at least one tissue, making them promising candidate genes. Gene ontology (GO) analysis of these promising genes highlights their significant roles in various biological processes in rice. This is the first study to identify meta-QTLs associated with cooking and eating grain quality in rice.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis of quantitative trait loci associated with grain quality traits in rice (Oryza sativa L.)\",\"authors\":\"Nahid Feizi,&nbsp;Atefeh Sabouri,&nbsp;Amin Abedi,&nbsp;Adel Bakhshipour\",\"doi\":\"10.1007/s11738-025-03780-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rice grain quality is a crucial factor in determining its economic value. Numerous studies have identified quantitative trait loci (QTLs) associated with grain quality. However, to date, no meta-analysis of QTLs for rice cooking and eating quality traits has been reported. Therefore, we conducted a meta-analysis of QTLs to identify consensus QTLs located at the same locus across multiple studies, aiming to detect significant meta-QTLs (MQTLs) that can be targeted for marker-assisted selection (MAS) applications. In this study, 26 MQTLs were identified from 193 initial independent QTLs related to grain quality traits, including amylose content (AC), gel consistency (GC), and gelatinization temperature (GT). The substantial reduction in the confidence interval of the initial QTLs compared to the MQTLs (from 20.91 to 7.21 cM) led to the identification of both annotated and putative candidate genes associated with the traits. The highest number of MQTLs (eight) was found on chromosome 6. The phenotypic variance explained (<i>R</i><sup>2</sup>) by the MQTLs ranged from 2 to 51%, with an average of 19%. Out of the 561 candidate genes identified within the MQTLs, 461 had available expression data. Analysis of their expression patterns in various rice tissues showed that 181 genes had an expression value (FPKM) greater than 10 in at least one tissue, making them promising candidate genes. Gene ontology (GO) analysis of these promising genes highlights their significant roles in various biological processes in rice. This is the first study to identify meta-QTLs associated with cooking and eating grain quality in rice.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"47 3\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-025-03780-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03780-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

稻米品质是决定其经济价值的重要因素。大量研究已经确定了与粮食品质相关的数量性状位点。然而,到目前为止,还没有对大米烹饪和食用品质性状的qtl进行meta分析的报道。因此,我们对qtl进行了荟萃分析,以确定多个研究中位于同一位点的一致性qtl,旨在检测可用于标记辅助选择(MAS)应用的重要元qtl (mqtl)。本研究从193个与直链淀粉含量(AC)、凝胶浓度(GC)和糊化温度(GT)相关的初始独立qtl中鉴定出26个mqtl。与mqtl相比,初始qtl的置信区间大幅降低(从20.91 cM降至7.21 cM),从而鉴定出与这些性状相关的注释基因和假定候选基因。在6号染色体上发现的mqtl数量最多(8个)。mqtl解释的表型方差(R2)范围为2 ~ 51%,平均为19%。在mqtl中鉴定的561个候选基因中,有461个具有可用的表达数据。对这些基因在水稻不同组织中的表达模式分析表明,181个基因在至少一个组织中的表达值(FPKM)大于10,是有希望的候选基因。基因本体(GO)分析这些有希望的基因突出了它们在水稻各种生物过程中的重要作用。这是首次发现与大米烹饪和食用谷物质量相关的meta- qtl。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-analysis of quantitative trait loci associated with grain quality traits in rice (Oryza sativa L.)

Rice grain quality is a crucial factor in determining its economic value. Numerous studies have identified quantitative trait loci (QTLs) associated with grain quality. However, to date, no meta-analysis of QTLs for rice cooking and eating quality traits has been reported. Therefore, we conducted a meta-analysis of QTLs to identify consensus QTLs located at the same locus across multiple studies, aiming to detect significant meta-QTLs (MQTLs) that can be targeted for marker-assisted selection (MAS) applications. In this study, 26 MQTLs were identified from 193 initial independent QTLs related to grain quality traits, including amylose content (AC), gel consistency (GC), and gelatinization temperature (GT). The substantial reduction in the confidence interval of the initial QTLs compared to the MQTLs (from 20.91 to 7.21 cM) led to the identification of both annotated and putative candidate genes associated with the traits. The highest number of MQTLs (eight) was found on chromosome 6. The phenotypic variance explained (R2) by the MQTLs ranged from 2 to 51%, with an average of 19%. Out of the 561 candidate genes identified within the MQTLs, 461 had available expression data. Analysis of their expression patterns in various rice tissues showed that 181 genes had an expression value (FPKM) greater than 10 in at least one tissue, making them promising candidate genes. Gene ontology (GO) analysis of these promising genes highlights their significant roles in various biological processes in rice. This is the first study to identify meta-QTLs associated with cooking and eating grain quality in rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信