Acta Physiologiae Plantarum最新文献

筛选
英文 中文
Exogenous jasmonic acid increases Barringtonia racemosa tolerance to heavily lead-contaminated soil 外源茉莉酸增加总状叶刺槐对重度铅污染土壤的耐受性
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-15 DOI: 10.1007/s11738-025-03837-x
Yutong Lin, Xixian Liang, Qiuwei Huang, Haiqing Jiang, Caizhen Luo, Wenjia Chen, Yuting Yang, Xiaohui Tan, Fang Liang
{"title":"Exogenous jasmonic acid increases Barringtonia racemosa tolerance to heavily lead-contaminated soil","authors":"Yutong Lin,&nbsp;Xixian Liang,&nbsp;Qiuwei Huang,&nbsp;Haiqing Jiang,&nbsp;Caizhen Luo,&nbsp;Wenjia Chen,&nbsp;Yuting Yang,&nbsp;Xiaohui Tan,&nbsp;Fang Liang","doi":"10.1007/s11738-025-03837-x","DOIUrl":"10.1007/s11738-025-03837-x","url":null,"abstract":"<div><p>Highly toxic lead (Pb) is essentially a threat to the ecological security of mangrove wetlands in the South China Sea. <i>Barringtonia racemosa</i> is a typical and endangered semi-mangrove, which may be suffering from heavy Pb pollution. Jasmonic acid (JA) can regulate plant defense mechanisms under Pb stress. This study explored the defense and adaptive mechanisms of <i>B. racemosa</i> under the regulation of JA through controlled experiments with a Pb concentration gradient. Results showed that exogenous JA significantly increased the palisade tissue and root cortex thickness of <i>B. racemosa</i> under different Pb concentrations, while the thickness of the vascular bundle diameter had the opposite response. Peroxidase activity, proline and chlorophyll concentrations were significantly increased under Pb stress. It can be concluded that increasing palisade tissue thickness, concentrations of photosynthetic pigments and antioxidant enzymes are aided by JA and constitute a vital Pb-stress response strategy for <i>B. racemosa</i>. JA enhanced antioxidant defense mechanisms, mitigating Pb toxicity and reducing reactive oxygen species produced under heavy Pb stress. Remarkably, under high Pb concentration, the bioconcentration factor and Pb absorption of <i>B. racemosa</i> were significantly reduced, improving its tolerance to Pb stress. This study revealed the regulatory mechanism of the exogenous hormone JA on the tolerance of <i>B. racemosa</i> under Pb stress, which has a scientific guiding significance for the protection of germplasm resources of <i>B. racemosa</i> in the heavily Pb-polluted areas of mangrove wetlands.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145062265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NtOGG1 regulates tobacco seed germination involving ethylene and reactive oxygen species pathways under salt stress 盐胁迫下NtOGG1通过乙烯和活性氧途径调控烟草种子萌发
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-13 DOI: 10.1007/s11738-025-03835-z
Yongzhi Niu, Wenlong Suo, Guoping Wang, Chengjing Wang, Dandan Wang, Zepeng Wu, Zhoufei Wang, Yunye Zheng
{"title":"NtOGG1 regulates tobacco seed germination involving ethylene and reactive oxygen species pathways under salt stress","authors":"Yongzhi Niu,&nbsp;Wenlong Suo,&nbsp;Guoping Wang,&nbsp;Chengjing Wang,&nbsp;Dandan Wang,&nbsp;Zepeng Wu,&nbsp;Zhoufei Wang,&nbsp;Yunye Zheng","doi":"10.1007/s11738-025-03835-z","DOIUrl":"10.1007/s11738-025-03835-z","url":null,"abstract":"<div><p>Salt stress significantly inhibits seed germination in tobacco, yet the molecular mechanisms underlying this process remain largely unexplored. In this study, we demonstrated that <i>NtOGG1</i>, encoding an 8-oxoguanine DNA glycosylase, functions as a positive regulator of salt tolerance during seed germination. Under 150 mM NaCl stress, the overexpressing <i>NtOGG1</i> line (<i>NtOGG1</i>-OE) exhibited higher germination and seedling percentage compared to wildtype (WT), whereas CRISPR–Cas9 knockout mutant showed reductions in both parameters. RNA-Seq analysis revealed that differentially expressed genes (DEGs) in the <i>NtOGG1</i>-OE line, including ethylene-responsive transcription factors (ERFs), respiratory burst oxidase homologs (RBOHs), and catalase (CAT) genes, are implicated in the mitogen-activated protein kinase (MAPK) signaling pathway. Further qRT-PCR and physiological assays confirmed that the enhanced ethylene responses and reduced accumulation of reactive oxygen species (ROS) significantly promote seed germination in the <i>NtOGG1</i>-OE line under salt stress. These findings establish <i>NtOGG1</i> as a key regulator influencing seed germination under salt stress, providing a promising molecular target for breeding salt-tolerant tobacco cultivars.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145037378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Note: Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress 撤回注:亚精胺和脱落酸介导的水稻根细胞质蛋白磷酸化对盐度胁迫的响应
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-11 DOI: 10.1007/s11738-025-03840-2
Kamala Gupta, Bhaskar Gupta, Bharati Ghosh, Dibyendu Narayan Sengupta
{"title":"Retraction Note: Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress","authors":"Kamala Gupta,&nbsp;Bhaskar Gupta,&nbsp;Bharati Ghosh,&nbsp;Dibyendu Narayan Sengupta","doi":"10.1007/s11738-025-03840-2","DOIUrl":"10.1007/s11738-025-03840-2","url":null,"abstract":"","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145028341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of pre-sowing exposure of magnetic field on root and yield characteristics of sunflower 播前磁场暴露对向日葵根系及产量特性的影响
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-01 DOI: 10.1007/s11738-025-03833-1
Ananta Vashisth, Neetu Meena, P. Krishanan, Monika Kundu
{"title":"Influence of pre-sowing exposure of magnetic field on root and yield characteristics of sunflower","authors":"Ananta Vashisth,&nbsp;Neetu Meena,&nbsp;P. Krishanan,&nbsp;Monika Kundu","doi":"10.1007/s11738-025-03833-1","DOIUrl":"10.1007/s11738-025-03833-1","url":null,"abstract":"<div><p>Research was done to observe the magnetic field effect on root characteristics in sunflower crop raised from seeds exposed to the 200 mT magnetic field for 2 h. Treated seeds were grown under three different irrigation treatments at research field of ICAR-IARI, New Delhi, India along with control. Outcomes of the study exhibited that in treatment, plants had enhanced total root length, root surface area, and root volume in various development stages of the crop. Crop yield per volume of water supplied (water productivity, WP) had significantly more value in treatments than the control. The difference was higher in crop having less irrigation as compared to more irrigation in treatment than the control. Treatment had improved seed yield by 3 to 9% than control. Hence, sunflower seeds treated by 200 mT magnetic field for 2 h before sowing enhanced root growth, resulting in better water productivity and seed yield.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the plastome of Bergenia ciliata: comprehensive analysis of structure, codon usage pattern, and phylogenetic relationships within the medicinal family Saxifragaceae 解读纤毛蕨的质体:药用蕨科的结构、密码子使用模式和系统发育关系的综合分析
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-01 DOI: 10.1007/s11738-025-03834-0
Bimal K. Chetri, Rahul G. Shelke, Sudip Mitra, Latha Rangan
{"title":"Deciphering the plastome of Bergenia ciliata: comprehensive analysis of structure, codon usage pattern, and phylogenetic relationships within the medicinal family Saxifragaceae","authors":"Bimal K. Chetri,&nbsp;Rahul G. Shelke,&nbsp;Sudip Mitra,&nbsp;Latha Rangan","doi":"10.1007/s11738-025-03834-0","DOIUrl":"10.1007/s11738-025-03834-0","url":null,"abstract":"<div><p>Although the biogeography and systematics of Saxifragaceae taxa have advanced, the plastome structure, evolution, and phylogeny of <i>Bergenia ciliata</i> remain to be investigated. The plastid genome comprises 131 genes, which include 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. Nucleotide diversity (<i>Pi</i>) analysis unveils significant variability in specific protein-coding genes, such as <i>rps</i>12_copy, <i>mat</i>K, <i>clp</i>P, <i>ndh</i>F, and <i>ccs</i>A, that could be used as potential biomarkers. The IRb/SSC junction analysis reveals consistent transcription of <i>ycf</i>1 and <i>ndh</i>F across species. Exploration of Ka/Ks ratios in 89 protein-coding genes reveals that 73 genes are under purifying selection, while <i>pet</i>L demonstrated positive selection. Codon usage bias analysis revealed variable ENC values (25.61–61), indicating preferences in codon usage, with neutrality plots indicating a GC-rich bias influenced by natural selection and mutation pressure. RSCU analysis demonstrates distinct preferences for certain codons, particularly A/T (U)-ending codons in <i>B. ciliata</i>. The phylogenetic analysis establishes a robust relationship, with <i>B. ciliata</i> and <i>B. scopulosa</i> forming a closely related cluster (BS=100) indicative of a shared recent common ancestor. This study provides a foundational genomic resource for exploring evolutionary dynamics and ecological interactions of <i>B. ciliata</i> within Saxifragaceae.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative metabolomics analysis reveals the response of Euscaphis konishii and Euscaphis japonica to cold 通过比较代谢组学分析,揭示了小石鱼和日本鱼对寒冷的反应
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-01 DOI: 10.1007/s11738-025-03830-4
Xueru Jiang, Siyu Lu, Shuping Tu, Junhuo Cai, Wei Liu
{"title":"Comparative metabolomics analysis reveals the response of Euscaphis konishii and Euscaphis japonica to cold","authors":"Xueru Jiang,&nbsp;Siyu Lu,&nbsp;Shuping Tu,&nbsp;Junhuo Cai,&nbsp;Wei Liu","doi":"10.1007/s11738-025-03830-4","DOIUrl":"10.1007/s11738-025-03830-4","url":null,"abstract":"<div><p><i>Euscaphis konishii</i> and <i>Euscaphis japonica</i> are shrubs or small trees belonging to the Staphyleaceae family and are excellent ornamental fruit plants with high ornamental and medicinal value. There are a few studies on the cold tolerance of <i>E. konishii</i> and <i>E. japonica</i>, and their metabolic response to cold is not clear. Here, the non-targeted metabolomics (GC‒MS) technique was used to elucidate the response of <i>E. konishii</i> and <i>E. japonica</i> to cold at the metabolic level. Under cold treatment, <i>E. konishii</i> exhibited 10 upregulated and 1 downregulated differentially expressed metabolites (DEMs), whereas 10 upregulated and 7 downregulated DEMs were identified in <i>E. japonica</i>. The contents of key metabolites, such as sugars including raffinose and glucose-6-phosphate, amino acids including lysine and methionine 2, unsaturated fatty acids including linoleic acid, and flavonoid compounds including neohesperidin, were increased in <i>E. konishii</i> in response to cold. The contents of key metabolites, such as sugars including raffinose, trehalose, and fructose-6-phosphate, amino acids including aspartic acid 1 and aspartic acid 2, and organic acids including pyruvate and taurine, were increased, and sugars of sedoheptulose, organic acids of α-ketoglutaric acid, flavonoid compounds of hesperidin were decreased in <i>E. japonica</i> in response to cold. DEMs in <i>E. konishii</i> were significantly enriched in “linoleic acid metabolism,” while the DEMs in <i>E. japonica</i> were significantly enriched in “monobactam biosynthesis,” “cysteine and methionine metabolism,” “taurine and hypotaurine metabolism,” “sulfur metabolism,” and “ABC transporters.” This research expounds the metabolic differences of <i>E. konishii</i> and <i>E. japonica</i> in response to cold and provides a foundation for improving their resistance to cold stress.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological and biochemical responses to seed priming with polyethylene glycol under variable temperatures in soybean 不同温度下聚乙二醇催种对大豆生理生化的影响
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-01 DOI: 10.1007/s11738-025-03822-4
Simranpreet Singh Bola, Harpreet Kaur Virk, Navjyot Kaur
{"title":"Physiological and biochemical responses to seed priming with polyethylene glycol under variable temperatures in soybean","authors":"Simranpreet Singh Bola,&nbsp;Harpreet Kaur Virk,&nbsp;Navjyot Kaur","doi":"10.1007/s11738-025-03822-4","DOIUrl":"10.1007/s11738-025-03822-4","url":null,"abstract":"<div><p>Unfavorable temperatures during germination can significantly disrupt the physiological and biochemical processes crucial for seed germination, posing a challenge to soybean crop establishment and overall yield potential. Seed priming has emerged as a technique that has the potential to enhance crop establishment under high-temperature stress conditions. The presented study evaluated the impact of seed priming [without seed priming, hydropriming, and osmopriming with polyethylene glycol (PEG) 6000 @ −0.5, −1.0, −1.5 and −2.0 megapascal (MPa) for 6 h] at different temperatures (25, 30, 35, and 40℃) on physiological and biochemical parameters under controlled conditions. The experiment was conducted twice in factorial complete randomized design, each replicated four times. The results showed that seed priming with PEG @ −1.5 MPa recorded higher speed of germination, germination percentage, total seedling length, seedling dry weight, and vigor indices at 30 °C than other seed priming treatments and temperatures. Seed treated with PEG @ −1.5 MPa recorded higher speed of germination (15.3 and 8.2%), seedling vigor index I and II (19.6% and 13.0%, and 10.3% and 6.5%) over control and hydropriming, respectively. Compared to other priming treatments, PEG @ −1.5 MPa primed seeds exhibited significantly lower electrical conductivity, higher dehydrogenase activity, and higher percentage of stained seeds at the different temperatures tested (25, 30, 35, and 40℃). This implies that seed priming with PEG @ −1.5 MPa could serve as a valuable method to enhance the physiological and biochemical parameters of soybean at high temperatures, potentially fostering early plant development and augmenting yield potential.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating exogenous cobalt-induced stress in maize plants with biochar and arbuscular mycorrhizal fungi (Rhizophagus intraradices) 利用生物炭和丛枝菌根真菌(Rhizophagus intraradices)缓解外源钴诱导的玉米植株胁迫
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-09-01 DOI: 10.1007/s11738-025-03831-3
Frahad Ahmadi, Siavash Hosseini Sarghin, Adel Siosemardeh, Weria Weisany
{"title":"Mitigating exogenous cobalt-induced stress in maize plants with biochar and arbuscular mycorrhizal fungi (Rhizophagus intraradices)","authors":"Frahad Ahmadi,&nbsp;Siavash Hosseini Sarghin,&nbsp;Adel Siosemardeh,&nbsp;Weria Weisany","doi":"10.1007/s11738-025-03831-3","DOIUrl":"10.1007/s11738-025-03831-3","url":null,"abstract":"<div><p>The natural balance of biological systems, particularly plants, faces strains from various biotic and abiotic stressors. One such concern in agriculture is the accumulation of cobalt (Co) in soil, impacting plant growth and soil microflora adversely. This study delved into the impact of cobalt contamination on maize plants, vital for human and poultry consumption, and explored the potential benefits of soil amendments such as biochar (B) and arbuscular mycorrhizal fungi (AMF) as cost-effective remedies to enhance plant growth in metal-polluted soils. The investigation was conducted through a pot experiment to understand their effects. The experiment evaluated the impact of <i>Rhizophaus intraradices</i> and biochar on maize plants grown under different cobalt concentrations (0, 60, and 120 ppm). A wide range of physiological parameters, including plant height, number of leaves, root and shoot fresh and dry weight, relative water content, electrolyte leakage, chlorophyll and carotenoid content, oxidative stress, cobalt distribution, and nutrient content, were analyzed. The results revealed that cobalt contamination had a negative impact on plant growth, reducing chlorophyll and carotenoid content, increasing oxidative stress, and elevating cobalt accumulation in the shoot while also decreasing nutrient content. However, <i>Rhizophagus intraradices</i> inoculation and biochar application were shown to be effective in reducing cobalt uptake in aerial parts, improving nutrient content, and reducing oxidative stress. This study highlights the potential of AMF and biochar as cost-effective amendments for improving maize growth and mitigating cobalt toxicity in contaminated soils.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactive effects of elevated CO2 concentration and drought stress on some physio-morphological and biochemical characteristics of Quercus brantii seedlings CO2浓度升高和干旱胁迫对栎幼苗生理形态和生化特性的交互作用
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-08-23 DOI: 10.1007/s11738-025-03832-2
Parvaneh Yousefvand, Babak Pilehvar, Ali Heidar Nasrolahi
{"title":"Interactive effects of elevated CO2 concentration and drought stress on some physio-morphological and biochemical characteristics of Quercus brantii seedlings","authors":"Parvaneh Yousefvand,&nbsp;Babak Pilehvar,&nbsp;Ali Heidar Nasrolahi","doi":"10.1007/s11738-025-03832-2","DOIUrl":"10.1007/s11738-025-03832-2","url":null,"abstract":"<div><p>The elevated atmospheric CO<sub>2</sub> concentration is expected to increase plant growth and productivity and improve water use efficiency. Hence, elevated CO<sub>2</sub> is considered to mitigate to some extent the adverse effects of drought. We aimed to investigate physio-morphological and biochemical responses of 2-year-old Persian oak (<i>Quercus brantii</i> Lindl.) seedlings to the elevated CO<sub>2</sub> concentration and drought alone and when combined. Persian oak seedlings were grown in growth chambers at two CO<sub>2</sub> concentrations (ambient; 380 ppm and elevated; 700 ppm) and two water regimes (well-watered; 100% of field capacity and water stress; about 50% of this value) for one growing season (8 months). The results showed elevated CO<sub>2</sub> concentration significantly increased collar diameter, shoot height, leaf area, biomass production, root volume, photosynthetic traits, leaf pigments (chlorophyll and carotenoids) content, and relative leaf water content. While, it decreased total N content of leaves, proline content, electrolyte leakage, Malondialdehyde content, and antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase) activity in comparison to ambient CO<sub>2</sub> concentration. However, the root length was unaffected in response to elevated CO<sub>2</sub>. In contrast, drought had an adverse effect on the studied traits except for root length. These effects were alleviated by the presence of CO<sub>2</sub>, as apparent in physio-morphological and biochemical traits. Our findings suggest that in different proposed climate change scenarios, Persian oak trees may tolerate drought in the presence of elevated CO<sub>2</sub>.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 8","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144891368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of phytochemicals, antioxidative defense mechanism, and yield responses of Vigna radiata L. cultivars HUM 1 and HUM 16 under salinity stress 盐胁迫下紫荆品种hum1和hum16植物化学成分、抗氧化防御机制及产量响应的比较分析
IF 2.2 4区 生物学
Acta Physiologiae Plantarum Pub Date : 2025-08-23 DOI: 10.1007/s11738-025-03820-6
Amantika Singh, Krishna Kumar Choudhary
{"title":"Comparative analysis of phytochemicals, antioxidative defense mechanism, and yield responses of Vigna radiata L. cultivars HUM 1 and HUM 16 under salinity stress","authors":"Amantika Singh,&nbsp;Krishna Kumar Choudhary","doi":"10.1007/s11738-025-03820-6","DOIUrl":"10.1007/s11738-025-03820-6","url":null,"abstract":"<div><p>Salinity stress is posing serious threat to global food production and accountable for 20–50% of yield loss in various crops via hampering morphological, biochemical, and physiological processes of plants. To evaluate the impact of 0-, 50-, and 100-mM salinity levels, a pot experiment was conducted under ambient conditions on mung bean cultivars (HUM 1 and HUM 16). Reduction in plant height was observed by 15.1% and 34.8% for HUM 1 and 7.3% and 27.5% for HUM 16 under 50 and 100 mM, respectively. Higher generation of superoxide radical (51.3%) and hydrogen peroxide (29.1%) was observed for HUM 1 under 100 mM resulting into higher membrane damage (51.0%), assessed in the form of MDA content. To counter this oxidative stress, significant induction in non-enzymatic and enzymatic antioxidants like ascorbic acid (11.2% and 28.9%), superoxide dismutase (29.9% and 48.0%), and catalase (25.4% and 60.9%) was observed for HUM 1 and HUM 16 under 100 mM, respectively. On the other hand, significant accumulation of phenols and flavonoids was also noticed for HUM 16 under 50 and 100 mM. Reduction in yield was recorded more for HUM 1 (33.6% and 46.9%) as compared to HUM 16 (15.8% and 41.4%) under 50 and 100 mM, respectively. Results of the present study clearly demonstrated that 100-mM salinity stress was more severe as compared to 50 mM, and the magnitude of impact was observed higher for HUM 1 as compared to HUM 16.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 8","pages":""},"PeriodicalIF":2.2,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144891395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信