{"title":"Exogenous jasmonic acid increases Barringtonia racemosa tolerance to heavily lead-contaminated soil","authors":"Yutong Lin, Xixian Liang, Qiuwei Huang, Haiqing Jiang, Caizhen Luo, Wenjia Chen, Yuting Yang, Xiaohui Tan, Fang Liang","doi":"10.1007/s11738-025-03837-x","DOIUrl":null,"url":null,"abstract":"<div><p>Highly toxic lead (Pb) is essentially a threat to the ecological security of mangrove wetlands in the South China Sea. <i>Barringtonia racemosa</i> is a typical and endangered semi-mangrove, which may be suffering from heavy Pb pollution. Jasmonic acid (JA) can regulate plant defense mechanisms under Pb stress. This study explored the defense and adaptive mechanisms of <i>B. racemosa</i> under the regulation of JA through controlled experiments with a Pb concentration gradient. Results showed that exogenous JA significantly increased the palisade tissue and root cortex thickness of <i>B. racemosa</i> under different Pb concentrations, while the thickness of the vascular bundle diameter had the opposite response. Peroxidase activity, proline and chlorophyll concentrations were significantly increased under Pb stress. It can be concluded that increasing palisade tissue thickness, concentrations of photosynthetic pigments and antioxidant enzymes are aided by JA and constitute a vital Pb-stress response strategy for <i>B. racemosa</i>. JA enhanced antioxidant defense mechanisms, mitigating Pb toxicity and reducing reactive oxygen species produced under heavy Pb stress. Remarkably, under high Pb concentration, the bioconcentration factor and Pb absorption of <i>B. racemosa</i> were significantly reduced, improving its tolerance to Pb stress. This study revealed the regulatory mechanism of the exogenous hormone JA on the tolerance of <i>B. racemosa</i> under Pb stress, which has a scientific guiding significance for the protection of germplasm resources of <i>B. racemosa</i> in the heavily Pb-polluted areas of mangrove wetlands.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03837-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Highly toxic lead (Pb) is essentially a threat to the ecological security of mangrove wetlands in the South China Sea. Barringtonia racemosa is a typical and endangered semi-mangrove, which may be suffering from heavy Pb pollution. Jasmonic acid (JA) can regulate plant defense mechanisms under Pb stress. This study explored the defense and adaptive mechanisms of B. racemosa under the regulation of JA through controlled experiments with a Pb concentration gradient. Results showed that exogenous JA significantly increased the palisade tissue and root cortex thickness of B. racemosa under different Pb concentrations, while the thickness of the vascular bundle diameter had the opposite response. Peroxidase activity, proline and chlorophyll concentrations were significantly increased under Pb stress. It can be concluded that increasing palisade tissue thickness, concentrations of photosynthetic pigments and antioxidant enzymes are aided by JA and constitute a vital Pb-stress response strategy for B. racemosa. JA enhanced antioxidant defense mechanisms, mitigating Pb toxicity and reducing reactive oxygen species produced under heavy Pb stress. Remarkably, under high Pb concentration, the bioconcentration factor and Pb absorption of B. racemosa were significantly reduced, improving its tolerance to Pb stress. This study revealed the regulatory mechanism of the exogenous hormone JA on the tolerance of B. racemosa under Pb stress, which has a scientific guiding significance for the protection of germplasm resources of B. racemosa in the heavily Pb-polluted areas of mangrove wetlands.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.