Thilina Lakmini Gunathilaka, Upeka Bandaranayake, Mohamad Boudjelal, Rizwan Ali, Rajitha M. Silva, Kalpa W. Samarakoon, Pathmasiri Ranasinghe, L. Dinithi C. Peiris
{"title":"Chnoospora minima: a Robust Candidate for Hyperglycemia Management, Unveiling Potent Inhibitory Compounds and Their Therapeutic Potential","authors":"Thilina Lakmini Gunathilaka, Upeka Bandaranayake, Mohamad Boudjelal, Rizwan Ali, Rajitha M. Silva, Kalpa W. Samarakoon, Pathmasiri Ranasinghe, L. Dinithi C. Peiris","doi":"10.1007/s10126-024-10368-y","DOIUrl":"10.1007/s10126-024-10368-y","url":null,"abstract":"<div><p>The present study aimed to isolate a bioactive compound from Sri Lankan edible marine brown algae, <i>Chnoospora minima</i>, to manage diabetes. The de-polysaccharide crude methanolic extract was partitioned using hexane, chloroform, and ethyl acetate with increased polarity. The samples were subjected to determine the quantitative phytochemical analysis, antioxidants, and antidiabetic potentials. Further, the potent antidiabetic fraction was selected to isolate an active compound using bioactivity-guided fractionation. From the selected extract, the chloroform fraction exhibited comparatively high TPC (59.01 ± 1.86 mg GAE/g), TFC (5.14 ± 0.43 mg QE/g) and alkaloid content (2.79 ± 0.31 PE/g of extract). Crude methanol extract exhibited a potent DPPH activity (IC<sub>50</sub>: 0.48 ± 0.01 mg/mL) whereas the ethyl acetate fraction elicited a maximum ABTS activity (IC<sub>50</sub>: 0.064 ± 0.001 mg/mL) and a ferrous iron–chelating capacity (IC<sub>50</sub>: 0.019 mg/mL). Similarly, the chloroform fraction exhibited the highest FRAP (20.34 ± 1.72 mg TE/g) and ORAC (19.72 ± 2.92 mg TE/g) capacities. The potent inhibitory activity of α-amylase (IC<sub>50</sub>:3.17 ± 0.02 µg/mL) and α-glucosidase (IC<sub>50</sub>: 1.99 ± 0.01 µg/mL) enzymes and glucose diffusion was observed in the chloroform fraction. Similarly, the chloroform extract exhibited a potent BSA-glucose (IC<sub>50</sub>: 202.43 ± 5.71 µg/mL), BSA-MGO (IC<sub>50</sub>: 124.30 ± 2.85 µg/mL) antiglycation model and reversing activities (EC<sub>50BSAglucose</sub>: 98.99 ± 0.35 µg/mL; EC<sub>50BSA-MGO</sub>: 118.89 ± 1.58 µg/mL). Depending on the hypoglycemic activity, fucoxanthin was isolated as the active compound which showed a notable change in the functional group. Molecular docking studies were conducted on the compound, and binding energy was observed to be − 6.56 kcal/mol and − 4.83 kcal/mol for α-amylase and α-glucosidase enzymes, respectively, which confirmed the hypoglycemic effect of the isolated compounds. However, more studies are required to understand the mechanistic insights of these observations.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1231 - 1245"},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duarte Nuno Carvalho, Cristiana Gonçalves, Rita O. Sousa, Rui L. Reis, J. Miguel Oliveira, Tiago H. Silva
{"title":"Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications","authors":"Duarte Nuno Carvalho, Cristiana Gonçalves, Rita O. Sousa, Rui L. Reis, J. Miguel Oliveira, Tiago H. Silva","doi":"10.1007/s10126-024-10361-5","DOIUrl":"10.1007/s10126-024-10361-5","url":null,"abstract":"<div><p>Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R’s policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1079 - 1119"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10126-024-10361-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Embryonic Genome Activation (EGA) Occurred at 1-Cell Stage of Embryonic Development in the Mud Crab, Scylla paramamosain, Revealed by RNA-Seq","authors":"Li-Kun Xu, Chun-Yan Ma, Feng-Ying Zhang, Wei Wang, Ming Zhao, Xin Jin, Jin-Ju Yin, Ling-Bo Ma, Wei Chen, Jia-Yuan Xu, Ke-Yi Ma, Zhi-Qiang Liu","doi":"10.1007/s10126-024-10369-x","DOIUrl":"10.1007/s10126-024-10369-x","url":null,"abstract":"<div><p>As a prerequisite for the success of embryo development, embryonic genome activation (EGA) is an important biological event in which zygotic gene products in the embryo are activated to replace maternal-derived transcripts. Although EGA has been extensively studied in a large number of vertebrates and invertebrates, there is a lack of information regarding this event in crustacean crab. In this study, the timing of EGA was confirmed by examining a transcriptomic dataset of early embryonic development, including mature oocytes and embryos through six early developmental stages, and signaling pathways associated with EGA were identified in the mud crab, <i>S. paramamosain.</i> The comprehensive transcriptomic data identified a total of 53,915 transcripts from these sequencing samples. Notable transcriptomic change was evident at the 1-cell stage, indicated by a 36% transcript number shift and a reduction in transcript fragment length, compared to those present in the mature oocytes. Concurrently, a substantial increase in the expression of newly transcribed transcripts was observed, with gene counts reaching 3485 at the 1-cell stage, indicative of the onset of EGA. GO functional enrichment revealed key biological processes initiated at the 1-cell stage, such as protein complex formation, protein metabolism, and various biosynthetic processes. KEGG analysis identified several critical signaling pathways activated during EGA, including the “cell cycle,” “spliceosome,” “RNA degradation”, and “RNA polymerase”, pathways. Furthermore, transcription factor families, including zinc finger, T-box, Nrf1, and Tub were predominantly enriched at the 1-cell stage, suggesting their pivotal roles in regulating embryonic development through the targeting of specific DNA sequences during the EGA process. This groundbreaking study not only addresses a significant knowledge gap regarding the developmental biology of <i>S. paramamosain</i>, especially for the understanding of the mechanism underlying EGA, but also provides scientific data crucial for the research on the individual synchronization of seed breeding within <i>S. paramamosain</i> aquaculture. Additionally, it serves as a reference basis for the study of early embryonic development in other crustacean species.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1246 - 1259"},"PeriodicalIF":2.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaowei Zhong, Yilei Wang, Yan Feng, Yan Xu, Pengfei Zou, Ziping Zhang, Yonghua Jiang
{"title":"Induction of Pluripotent Stem Cells from Muscle Cells of Large Yellow Croaker (Larimichthys Crocea) Via Electrotransfection","authors":"Zhaowei Zhong, Yilei Wang, Yan Feng, Yan Xu, Pengfei Zou, Ziping Zhang, Yonghua Jiang","doi":"10.1007/s10126-024-10372-2","DOIUrl":"10.1007/s10126-024-10372-2","url":null,"abstract":"<div><p>Induced pluripotent stem cells (iPSCs) are a new type of pluripotent cells reprogrammed from somatic cells back into an embryonic-like pluripotent state of stem cells to study development, disease and potential gene therapies. The induction and regulation mechanisms of iPSCs in fish are still unclear. By using the transfection technique, we investigated the crucial function of the OSKMNL factor co-expression for somatic reprogramming in the muscle cell line of large yellow croaker (<i>Larimichthys crocea</i>) (LYCMs) and successfully established a stable iPSCs line (<i>Lc</i>-OSNL-iPSCs). Stable culturing of iPSCs with high alkaline phosphatase activity and a stable karyotype was achieved. The qRT-PCR and immunofluorescence labeling results revealed that <i>Lc-</i>OSNL-iPSCs displayed a high expression level of pluripotent marker genes such as <i>Nanog</i>, <i>Oct4</i>, and <i>Sox2</i>. There were significant differences between <i>Lc-</i>OSNL-iPSCs, <i>Lc-</i>OSKMNL-iPSCs, and LYCMs, and the expression of several genes in maintaining cell pluripotency was up-regulated when the pluripotency signal pathway of stem cells was activated. The technical system for inducing iPSCs of <i>Larimichthys crocea</i> was constructed in this study. This system can serve as a basic model to understand germ cell differentiation mechanism, gender control, genetics, and breeding of large yellow croaker and a platform for studying iPSCs in fish. Interestingly, the acquired iPSCs serves as a useful material for the directional induction of muscle stem cells, thereby establishing the groundwork for obtaining \"artificial fish\" in the future.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1287 - 1306"},"PeriodicalIF":2.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morpho-histological and Transcriptome Analysis Reveal the Unreduced Sperm Formation Mechanism in cdk1-Depletion Zebrafish","authors":"Yunbang Zhang, Rongyun Li, Hui Li, Yuwei Huang, Yihui Mei, Yuxuan Zheng, Yankun Guo, Zihao Zhou, Zhonglin Yong, Ying Zhao, Wenjing Dong, Jian Gao, Xiaojuan Cao","doi":"10.1007/s10126-024-10366-0","DOIUrl":"10.1007/s10126-024-10366-0","url":null,"abstract":"<div><p>Cyclin-dependent kinases (Cdks) are major molecules related to cell cycle regulation. Polyploidy can be caused by the production of unreduced gametes, which is often related to the abnormal cell cycle of germ cells. Here, we successfully constructed a <i>cdk1</i> mutation line (<i>cdk1</i><sup>+<i>/−</i></sup>) in zebrafish, a commonly used model organism. It showed that <i>cdk1</i> depletion resulted in the generation of both polyploid and aneuploid embryos of WT♀ × <i>cdk1</i><sup>+<i>/−</i></sup><i>♂</i> zebrafish. In addition to normal sperms (1N), the depletion of <i>cdk1</i> in zebrafish also led to the production of some large-head 2N sperms and higher ploidy sperms. Results of bivalent analysis of testis and ultrastructure analysis of spermatogonia suggested that the production of these large-head sperms was due to spermatogonia chromosome doubling in <i>cdk1</i><sup>+<i>/−</i></sup> zebrafish. Transcriptome analysis revealed aberrant expressions of some cell cycle and DNA replication-related genes in the early testis of <i>cdk1</i><sup>+<i>/−</i></sup> zebrafish relative to WT zebrafish. Through STRING correlation analysis, we further proved that <i>cdk1</i> depletion affected the mitosis process and endoduplication initiation of spermatogonia by regulating expressions of some proteins related to cell cycle (i.e., Espl1 and Pp1) and DNA replication (i.e., Orc1 and Rnaseh2b), thereby leading to the formation of unreduced sperms. This study provides important information on revealing the molecular mechanisms of unreduced gamete formation caused by <i>cdk1</i> mutation. Meanwhile, it also provides an important reference for the creation of fish polyploid germplasm.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1206 - 1218"},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ioannis Georgoulis, Ioannis A. Giantsis, Basile Michaelidis, Konstantinos Feidantsis
{"title":"Heat Hardening Ameliorates Apoptotic and Inflammatory Effects Through Increased Autophagy in Mussels","authors":"Ioannis Georgoulis, Ioannis A. Giantsis, Basile Michaelidis, Konstantinos Feidantsis","doi":"10.1007/s10126-024-10371-3","DOIUrl":"10.1007/s10126-024-10371-3","url":null,"abstract":"<div><p>The severity, frequency, and duration of extreme events, in the context of global warming, have placed many marine ecosystems at high risk. Therefore, the application of methods that can mediate the impacts of global warming on marine organisms seems to be an emerging necessity in the near term. In this context, enhancing the thermal resilience of marine organisms may be crucial for their sustainability. It has been shown that the repeated time-limited exposure of an organism to an environmental stimulus modifies its response mode, thus enhancing resilience and allowing adaptation of the physiological and developmental phenotype to environmental stress. In the present study, we investigated the “stress memory” effect caused by heat hardening on <i>Mytilus galloprovincialis</i> cellular pathways to identify the underlying biochemical mechanisms that enhance mussel thermal tolerance. Heat hardening resulted in increased ETS activity and ATP production and increased autophagic performance at all elevated temperatures (24 °C, 26 °C, and 28 °C). Furthermore, at these increased temperatures, apoptosis and inflammation remain at significantly lower levels in pregnant individuals than in nonhardened individuals. Autophagy, as a negative regulator of apoptosis, may lead to decreased damage to surrounding cells, which in turn alleviates inflammatory effects. In conclusion, the exposure of mussels to heat hardening seems to provide a physiological response that enhances heat tolerance and increases cell survival through increased energy production and reduced cell death and inflammatory responses. The latter can be utilized for the management and conservation of aquatic species of economic value or endangered status.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1271 - 1286"},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongce Song, Meiyun Dong, Wenwen Xu, Chaoyi Xie, Yuxuan Zhang, Haifeng Huang, Kai Zhang, Yijing Han, Yaqiong Liu, Lei Wei, Xiaotong Wang
{"title":"Regulation of Biomineralization and Autophagy by the Stress-Sensing Transcription Factor CgRunx1 in Crassostrea gigas Under Daylight Ultraviolet B Radiation","authors":"Hongce Song, Meiyun Dong, Wenwen Xu, Chaoyi Xie, Yuxuan Zhang, Haifeng Huang, Kai Zhang, Yijing Han, Yaqiong Liu, Lei Wei, Xiaotong Wang","doi":"10.1007/s10126-024-10370-4","DOIUrl":"10.1007/s10126-024-10370-4","url":null,"abstract":"<div><p>As human activities increase and environmental changes persist, increased ultraviolet B (UVB) radiation in aquatic ecosystems poses significant threats to aquatic life. This study, through transcriptomic analysis of the mantle tissue of <i>Crassostrea gigas</i> following UVB radiation exposure, identified and validated two key transcription factors, CgRunx1 and CgCBFβ. The highest expression levels of CgRunx1 and CgCBFβ in the mantle suggest their pivotal roles in this tissue. Co-immunoprecipitation experiments revealed that CgRunx1 and CgCBFβ could form heterodimers and interact with each other. Furthermore, this study assessed the impact of UVB radiation on the levels of reactive oxygen species of the <i>C. gigas</i>, speculating that CgRunx1, as a potential redox-sensitive transcription factor, might be regulated by intracellular ROS. Through screening and binding site prediction analysis of target genes, coupled with dual-luciferase reporter assays, we verified that CgRunx1 might participate in regulating the biomineralization and autophagy processes in <i>C. gigas</i> by activating the transcriptional expression of target genes <i>Transport and Golgi organization 1</i> and <i>V-type proton ATPase catalytic subunit A</i>. These findings provide new insights into the molecular response mechanisms of the <i>C. gigas</i> to UVB radiation and lay an important foundation for studying the adaptive evolution of bivalves to environmental stress.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1260 - 1270"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinghai Liu, Lina Sun, Ziming Li, Hongyuan Zhao, Yujia Yang
{"title":"Development of Reliable Male-Specific Molecular Markers for Genetic Sex Identification in Sea Cucumber Apostichopus japonicus","authors":"Xinghai Liu, Lina Sun, Ziming Li, Hongyuan Zhao, Yujia Yang","doi":"10.1007/s10126-024-10364-2","DOIUrl":"10.1007/s10126-024-10364-2","url":null,"abstract":"<div><p><i>Apostichopus japonicus</i> is an important marine aquaculture species in China, with high nutritional and economic value. In <i>A. japonicus</i>, there is no obvious sexual dimorphism in external appearance, and sex differentiation primarily relies on the observation of mature gonads after dissection, which leads to difficulties in sex identification. The confusion in sex identification greatly reduces breeding efficiency in the sea cucumber industry. Therefore, developing a reliable sex-specific marker is crucial. In this study, we identified 586 male-specific sequences through whole-genome assembly and sequence alignment, but did not identify any female-specific sequences, inferring an XY-type sex determination system in sea cucumbers. We developed a set of male-specific molecular markers to establish an accurate, stable, and widely adaptable genetic sex identification technique for <i>A. japonicus</i>. The male-specific molecular markers were validated with 100% accuracy in sea cucumber populations from six different geographical regions in China. In conclusion, this study provides further evidence for the XY-type sex determination system in <i>A. japonicus</i> and establishes an effective genetic sex identification method for multi-geographic populations, which benefits future study on reproductive biology and has significant implications in sea cucumber aquaculture industry.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1194 - 1205"},"PeriodicalIF":2.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Ali Noman Reza, Thomas Nelson Harvey, Axmee Regmi, Jacob Seilø Torgersen, Guro Katrine Sandvik
{"title":"Exploring the Use of Alternative Promoters for Enhanced Transgene and sgRNA Expression in Atlantic Salmon Cells","authors":"Mohammad Ali Noman Reza, Thomas Nelson Harvey, Axmee Regmi, Jacob Seilø Torgersen, Guro Katrine Sandvik","doi":"10.1007/s10126-024-10362-4","DOIUrl":"10.1007/s10126-024-10362-4","url":null,"abstract":"<div><p>This study facilitates design of expression vectors and lentivirus tools for gene editing of Atlantic salmon. We have characterized widely used heterologous promoters and novel endogenous promoters in Atlantic salmon cells. We used qPCR to evaluate the activity of several U6 promoters for sgRNA expression, including human U6 (hU6), tilapia U6 (tU6), mouse U6 (mU6), zebrafish U6 (zU6), Atlantic salmon U6 (sU6), medaka U6 (medU6), and fugu U6 (fU6) promoters. We also evaluated several polymerase type II (pol II) promoters by luciferase assay. Our results showed that hU6 and tU6 promoters were the most active among all the tested U6 promoters, and heterologous promoters (CMV, hEF1α core) had higher activity compared to endogenous Atlantic salmon promoters sHSP8, sNUC3L, sEF1α. Among endogenous pol II promoters, sEF1α and sHSP8 displayed higher activity than sNUC3L, sHSP703, sHSP7C, sXRCC1L, and sETF. We observed that extending the promoter sequence to include the region up to the start codon (ATG) resulted in a significant increase in expression efficiency for sNUC3L and sEF1α. We also show that mutating the PRDM1 motif will significantly decrease the activity of the sEF1α promoter. The presence of the PRDM1 motif in sHSP8 promoter was also associated with relatively high expression compared to the promoters that naturally lacked this motif, such as sNUC3L. We speculate that this short sequence might be included in other promoters to further enhance the promoter activity, but further experiments are needed to confirm this. Our findings provide valuable insights into the activity of different promoters in Atlantic salmon cells and can be used to facilitate further transgenic studies and improve the efficiency of transgene expression in Atlantic salmon.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1143 - 1154"},"PeriodicalIF":2.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10126-024-10362-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pingrui Xu, Yongshuang Xiao, Zhizhong Xiao, Jun Li
{"title":"Exploitation and Application of a New Genetic Sex Marker Based on Intron Insertion Variation of erc2 Gene in Oplegnathus punctatus","authors":"Pingrui Xu, Yongshuang Xiao, Zhizhong Xiao, Jun Li","doi":"10.1007/s10126-024-10363-3","DOIUrl":"10.1007/s10126-024-10363-3","url":null,"abstract":"<div><p>Spotted knifejaw (<i>Oplegnathus punctatus</i>), one of the most valuable mariculture species, grows with significant sexual dimorphism, with males growing significantly faster than females. <i>O. punctatus</i> not only has excellent growth characteristics and high food value, but also shows high economic value in aquaculture, which has become a hotspot in the field of aquaculture. The current insufficiency of sex marker identification in <i>O. punctatus</i> restricts the process of its unisexual breeding. Rapid identification of sex will help to study the mechanisms of sex determination and accelerate the development of sex-controlled breeding. With the completion of the sequencing of the male and female genomes of <i>O. punctatus</i>, the efficient and precise development of genetic sex markers has been made possible. In this study, we used genome-wide information combined with molecular biology techniques from marker sequences to further establish a rapid method for DNA insertion variant detection in the intron of <i>O. punctatus erc2</i> gene, which can be used to rapidly, accurately, and efficiently identify whether DNA insertion occurs in the intron of <i>O. punctatus erc2</i> gene to be detected, and to identify the sex of <i>O. punctatus</i> to be detected. It could also be distinguished by agarose gel electrophoresis, which would shorten the time for accurate identification and improves the detection efficiency. Homozygous comparison of male and female individuals showed that the length of the DNA fragment of the <i>erc2</i> gene was 239 bp on chromosome X<sub>1</sub> and 1173 bp on chromosome Y. It can therefore be inferred that a 934 bp insertion fragment exists on the Y chromosome. The PCR amplification results showed that two DNA fragments of 1173 bp and 239 bp could be amplified in male <i>O. punctatus</i>, and the 1173 bp fragment was a marker fragment specific to the variant intron <i>erc2</i> gene, while only a single DNA fragment of 239 bp was amplified in female <i>O. punctatus</i>. It has important significance and application value in the study of neurotransmitter transmission and environmental adaptability of female and male fish based on <i>erc2</i> gene, as well as the identification of male and female sex, the preparation of high male fry, and family breeding.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"26 6","pages":"1155 - 1164"},"PeriodicalIF":2.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}