2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)最新文献

筛选
英文 中文
Low Phase Noise Frequency Division Using PLL 采用锁相环的低相位噪声分频
A. Pluteshko
{"title":"Low Phase Noise Frequency Division Using PLL","authors":"A. Pluteshko","doi":"10.1109/IFCS-ISAF41089.2020.9234903","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234903","url":null,"abstract":"The paper presents a method of low phase noise frequency division using PLL technique. The condition that provides for the residual phase noise comparable to the regenerative frequency divider (RFDiv) performance is given. The advantages over the RFDiv are shown. Some of these include the easier achievable frequency division ratios larger than 2 and the optimal performance not requiring the circuit adjustment. The measured data on the residual phase noise of the PLL frequency divider by 10 are presented. These show that the measurement setup noise floor of −139 dB(rad2/Hz) at 10 Hz offset is virtually unaffected by the noise of the divider.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"80 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83523755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperfine-structure Measurement of the 7P1/2 State in 133Cs Based on the Active Optical Clock 基于有源光时钟的133c中7P1/2态的超精细结构测量
Tiantian Shi, Jianxiang Miao, D. Pan, Jingbiao Chen
{"title":"Hyperfine-structure Measurement of the 7P1/2 State in 133Cs Based on the Active Optical Clock","authors":"Tiantian Shi, Jianxiang Miao, D. Pan, Jingbiao Chen","doi":"10.1109/IFCS-ISAF41089.2020.9234853","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234853","url":null,"abstract":"The hyperfine structure (hfs) of Cs 7P1/2 state is measured utilizing four-level active optical clock. Combing the Doppler effect and the active stimulated emission, the accuracy of Cs 7P1/2 hfs is expected to be optimized. The correction terms of experimental results, such as cavity-pulling effect, light shift and collision shift, are analyzed. Such a scheme can be widely extended to other alkali-metal atoms to enrich the measurements of hfs.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83434532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Laser Phase Noise Measurement by Using Offset Optical Phase Locked Loop 偏置光锁相环测量激光相位噪声
H. Peng, Naijin Liu, Qijun Liang, Guangyu Gao, Yankun Li, Xiaopeng Xie, Zhangyuan Chen
{"title":"Laser Phase Noise Measurement by Using Offset Optical Phase Locked Loop","authors":"H. Peng, Naijin Liu, Qijun Liang, Guangyu Gao, Yankun Li, Xiaopeng Xie, Zhangyuan Chen","doi":"10.1109/IFCS-ISAF41089.2020.9234838","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234838","url":null,"abstract":"Phase noise is a key parameter to evaluate the short-term stability of a single-frequency laser. It is of great important for many applications, such as Lidar, coherent optical communication, optical sensing, and optical atomic clock, just to name a few. In this paper, we propose a method to characterize the phase noise of a single-frequency, which based on an offset phase locked loop (OPLL). The phase of the laser under test and a low noise reference laser are locked via an offset OPLL. The phase noise of the laser under test can be extracted by the beat-note of the two lasers. Experimentally, we achieve the phase noise of a narrow-linewidth laser, which agree well with the results of a commercial optical noise analyzer.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"23 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91310470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ultrastable Long-haul Fibre-optic Radio Frequency Transfer Based on PLL Frequency Mixing 基于锁相环混频的超稳定长距离光纤射频传输
Chenxia Liu, Shujin Zhou, Zhuoze Zhao, Hao Gao, Jianming Shang, Xing Chen, Bin Luo, Song Yu
{"title":"Ultrastable Long-haul Fibre-optic Radio Frequency Transfer Based on PLL Frequency Mixing","authors":"Chenxia Liu, Shujin Zhou, Zhuoze Zhao, Hao Gao, Jianming Shang, Xing Chen, Bin Luo, Song Yu","doi":"10.1109/IFCS-ISAF41089.2020.9234877","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234877","url":null,"abstract":"This paper presents the system for ultrastable radio frequency (RF) transfer over long-haul optical fiber link without any relay system. Signal to noise ratio of the phase conjugate signal is improved by 20 dB(@RBW 2 MHz) via utilising phase locked loop during the frequency mixing process. The experiments are performed over 1007 km fiber link, detailed information of which is given in this paper. The measured fractional frequency stability of 2.4 GHz RF signal transmission system approaches $8.20times 10^{-14} @1 mathrm{s}$ and $7.87times 10^{-17} @10000 mathrm{s}$.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"9 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85929150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
High Coupling Coefficient Resonance Mode in Al0.68Sc0.32N Surface Acoustic Wave Resonator with AlN Buffer Layer on a Silicon Substrate 硅衬底AlN缓冲层Al0.68Sc0.32N表面声波谐振器的高耦合系数谐振模式
Zichen Tang, Michael D’Agati, R. Olsson
{"title":"High Coupling Coefficient Resonance Mode in Al0.68Sc0.32N Surface Acoustic Wave Resonator with AlN Buffer Layer on a Silicon Substrate","authors":"Zichen Tang, Michael D’Agati, R. Olsson","doi":"10.1109/IFCS-ISAF41089.2020.9234828","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234828","url":null,"abstract":"We report on a resonance mode with high electro-mechanical coupling coefficient (kt 2) in an Aluminum Scandium Nitride (AlScN) Surface Acoustic Wave (SAW) resonator with an Aluminum Nitride (AlN) buffer layer on a silicon substrate. We demonstrate the influence of electrode material, electrode thickness, AlScN thickness, and device orientation on the kt 2. We utilize the optimized parameters from this study to realize SAW devices in a CMOS compatible fabrication process and measured a kt 2 as high as 4.78%, which is a high value for AlScN SAW devices reported on low cost single crystal silicon substrates.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"61 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90996525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Wireless Passive Time-of-Flight Respiratory MEMS Flow Rate Sensor 无线无源飞行时间呼吸MEMS流量传感器
Sina Moradian, Parvin Akhkandi, Hedy Fatemi, R. Abdolvand
{"title":"Wireless Passive Time-of-Flight Respiratory MEMS Flow Rate Sensor","authors":"Sina Moradian, Parvin Akhkandi, Hedy Fatemi, R. Abdolvand","doi":"10.1109/IFCS-ISAF41089.2020.9234904","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234904","url":null,"abstract":"Here we present the first instance of passive wireless MEMS flow rate sensor designed to measure respiratory flow rate and profile using the time-of-flight sensing modality without the need for battery or on-sensor circuits. With a footprint of only 7.2cm2, the sensor can measure human respiratory rate and flow when placed close to the nasal airway using an excitation antenna that transmits an average power of ∼5mW at a ∼75cm distance. To facilitate the time-of-flight sensor, two low loss, high quality factor TPoS MEMS resonators are placed ∼1cm apart and are connected to a small (3.8cm2) planar ground antenna. We were able to measure flow rate and respiration profile of human subject from a distance of 20cm from the base transceiver. In addition to flow rate, we were capable of accurately tracking the respiration profile of the patient and successfully detecting short cessation of breathing events commonly used in diagnosing sleep apnea.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"183 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85630680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
11 GHz Lateral-Field-Excited Aluminum Nitride Cross-Sectional Lamé Mode Resonator 11ghz横向场激发氮化铝横截面lam<s:1>模谐振器
Meruyert Assylbekova, Guofeng Chen, Giuseppe Michetti, Michele Pirro, L. Colombo, M. Rinaldi
{"title":"11 GHz Lateral-Field-Excited Aluminum Nitride Cross-Sectional Lamé Mode Resonator","authors":"Meruyert Assylbekova, Guofeng Chen, Giuseppe Michetti, Michele Pirro, L. Colombo, M. Rinaldi","doi":"10.1109/IFCS-ISAF41089.2020.9234874","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234874","url":null,"abstract":"This paper reports the first experimental demonstration of a Lateral-Field-Excited (LFE) Aluminum Nitride (AlN) Cross-Sectional Lamé Mode Resonator (CLMR) operating at 11 GHz. First, the device is modeled via Finite Element Analysis (FEA). Next, optimized design is realized via a simple 2-mask fabrication process. Fabricated LFE AlN CLMR demonstrates a loaded quality factor ($Q_{l}$) of 615 and an electromechanical coupling coefficient ($k_{t}^{2}$) of 1.3%, resulting in an exceptionally high Figure-of-Merit ($text{FoM}=k_{t}^{2}cdot Q_{l}$) of 8. In addition, the capability to litographycally define the center frequency without significantly degrading its $k_{t}^{2}$ makes LFE ALN CLMRs one of the best candidates for the realization of low-cost yet high-performance filters scaled to operate in the X-band.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82144649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Characterization of GPS Disciplined Oscillators Using a Laboratory GNSS Simulation Testbed 利用实验室GNSS仿真试验台对GPS训练振荡器进行表征
Julia Bauer, Carsten Andrich, Alexander Ihlow, Niklas Beuster, G. del Galdo
{"title":"Characterization of GPS Disciplined Oscillators Using a Laboratory GNSS Simulation Testbed","authors":"Julia Bauer, Carsten Andrich, Alexander Ihlow, Niklas Beuster, G. del Galdo","doi":"10.1109/IFCS-ISAF41089.2020.9234932","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234932","url":null,"abstract":"This paper introduces a testbed to characterize the performance of GPS disciplined oscillators using a GNSS signal simulator and a measurement system based on software-defined radios and digital signal processing that allows to examine the stability of up to four devices with sub-nanosecond precision, time-coherently for 1 PPS and 10 MHz signals, in a controllable laboratory environment with reproducible and adjustable GNSS signal settings over a long-term observation period. To demonstrate the effectiveness of this method, four devices of one specific low-cost GPSDO type available to the authors are characterized and compared in terms of their positional accuracy and their time and frequency stability in steady state and during stabilization.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"8 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79794394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Frequency and Acoustic Performance Tunability for a SiN-AlScN Based PMUT Device 基于SiN-AlScN的PMUT器件的频率和声学性能可调性
Shomnath-Bhowmick, E. Marigó, M. Soundara-Pandian
{"title":"Frequency and Acoustic Performance Tunability for a SiN-AlScN Based PMUT Device","authors":"Shomnath-Bhowmick, E. Marigó, M. Soundara-Pandian","doi":"10.1109/IFCS-ISAF41089.2020.9234917","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234917","url":null,"abstract":"This paper presents a wide frequency range and acoustic performance tunability for a Piezoelectric Micromachined Ultrasonic transducer (PMUT) device. Aluminium Scandium Nitride (AlScN) sandwiched between Aluminium (Al) electrodes is used for the piezoelectric actuation. Thin-film Silicon-Nitride (SiN) acts as an elastic layer to tune the frequency and optimize the acoustic performance of the PMUT devices. The devices are fabricated using a CMOS compatible monolithic technique. We simulated the acoustic performance of the device in a water-coupled medium and demonstrated for a cavity size of $80mumathrm{m}$ the frequencies could be tuned within the range of 3.6MHz to 5.4MHz with a transmitting sensitivity ranging from 5.8 kPa/V to 7.8 kPa/V respectively.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"55 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79081247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Precise Time and Data Transfer Test Facility Using Optical Fiber Links in S-band and C-band 使用s波段和c波段光纤链路的精确时间和数据传输测试装置
Sarbojeet Bhowmick, J. Vojtěch, R. Velc, Martin Šlapák, L. Altmannova, V. Smotlacha
{"title":"Precise Time and Data Transfer Test Facility Using Optical Fiber Links in S-band and C-band","authors":"Sarbojeet Bhowmick, J. Vojtěch, R. Velc, Martin Šlapák, L. Altmannova, V. Smotlacha","doi":"10.1109/IFCS-ISAF41089.2020.9234893","DOIUrl":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234893","url":null,"abstract":"We perform the results implemented via time and data transfer using single-mode optical fiber. We use White Rabbit device which is an implementation of Precision Time Protocol (PTP) intended for the synchronization with sub-nanosecond precision. Our work briefs with the implementation of time transfer both in S-band and C-band. The work more focus on every timing system needs a primary time source which serves as a reference for all the nodes. In most sources the reference clock must fulfill rigorous requirements for the long-term stability. In this work atomic clock has been chosen as primary clock source.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"43 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75350681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信