{"title":"Eco-friendly Fabrication of Perovskite Solar Cells: From Material Engineering to Recycling","authors":"Olzhas Kurman, Eunju Jung, Ji-Youn Seo","doi":"10.1007/s11814-024-00331-x","DOIUrl":"10.1007/s11814-024-00331-x","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) are one of the most promising and rapidly developing emerging technologies in the field of photovoltaics. With the high development rate of photovoltaic technology, it is important to be aware of its environmental impact and eco-friendliness. Being a renewable energy harvesting technology, fabrication of PSCs is known to be a green manufacturing method, however, with the recent progress and various fabrication techniques, the environmental impact should be monitored and managed. Therefore, the environmental issues of the manufacturing process from materials design to perovskite deposition and recycling became crucial for their later commercialization. This review provides an outlook on the recent development of PSCs in the context of eco-friendliness and highlights the technology’s low contribution to environmental pollution.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3751 - 3770"},"PeriodicalIF":2.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sputtered Nickel Oxide Hole Transporting Layers for Perovskite Solar Cells","authors":"Yonghui Lee, Sang Il Seok","doi":"10.1007/s11814-024-00325-9","DOIUrl":"10.1007/s11814-024-00325-9","url":null,"abstract":"<div><p>Nickel oxide-based hole transporting layers have been widely adopted for the construction of p-i-n-structured perovskite solar cells. So far, various techniques have been explored to successfully build nickel oxide layers, and the sputtering process could be a strong one particularly in view of film uniformity and scalability. In this review, we examined fundamental properties and faced problems of the sputtered nickel oxide films shown in perovskite solar cells. Proposed strategies to overcome the current issues reported in the recent works on perovskite solar cells have been surveyed.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3669 - 3676"},"PeriodicalIF":2.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategies to Enhance the Performance of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells by Doping Approaches","authors":"Da-Seul Kim, Byoung Koun Min","doi":"10.1007/s11814-024-00326-8","DOIUrl":"10.1007/s11814-024-00326-8","url":null,"abstract":"<div><p>With the deepening climate emergency and the growing imperative to move beyond fossil fuels, Cu(In,Ga)(S,Se)<sub>2</sub>—commonly referred to as CIGS—thin-film solar cells are gaining prominence as a key pillar in the quest for long-term energy sustainability. Recently, CIGS solar cells have gained substantial recognition after achieving an impressive efficiency of over 23.6%. Despite this advancement and high-efficiency, the significant costs and technical complexities involved still pose major challenges to large-scale commercialization in vacuum-based processes. Solution-processed CIGS solar cells are being presented as a viable alternative to overcome these issues. This process allows for the formation of consistent thin films across large surfaces while also showing promise for reducing production costs. However, efficiency remains a key challenge and continues to be a critical factor for commercialization. The doping of new elements in CIGS absorber is an effective way to address these issues, significantly enhancing the performance of CIGS solar cells. Over the years, many elements have been incorporated into vacuum-based processes through doping, significantly contributing to high efficiency. Most notably, Uppsala University (UU) recently achieved a record efficiency of 23.6% by incorporating Sodium (Na), silver (Ag), and Rubidium (Rb). These findings imply that doping could potentially serve as a major catalyst for maximizing efficiency in solution-processed solar cells. This article reviews the latest developments in CIGS solar cells technology, summarizing the highest recorded efficiencies resulting from specific dopant incorporation strategies and combinations. Furthermore, we propose strategic approaches to improving the efficiency of solution-processed CIGS solar cells and discuss potential future research directions.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3771 - 3781"},"PeriodicalIF":2.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Colloidal Semiconductor Cadmium Chalcogenide Nanorods and Nanoplatelets: Growth, Optical Anisotropy and Directed Assembly","authors":"Jaeyoon Moon, Haejin Jeon, Dahin Kim","doi":"10.1007/s11814-024-00321-z","DOIUrl":"10.1007/s11814-024-00321-z","url":null,"abstract":"<div><p>Colloidal anisotropic semiconductor nanocrystals (NCs), including nanorods (NRs) and nanoplatelets (NPLs), have garnered significant attention in nanotechnology due to their unique optical and electronic properties, which arise from their anisotropic geometries. This review delves into the anisotropic growth mechanisms, optical polarization characteristics, and directed assembly techniques of cadmium chalcogenide NRs and NPLs. It highlights how the anisotropic growth imparts distinct electronic and optical behaviors—NRs exhibit remarkable emission polarization influenced by aspect ratio and core/shell structures, while NPLs demonstrate highly directed emission due to quantum and dielectric confinements in the thickness. The review also explores state-of-the-art methods for large-scale alignment using organic mediators, emphasizing their potential to enhance the performance and application of the anisotropic semiconductor NCs in cutting-edge technologies.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3413 - 3430"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shokhjakhon Dilshod Ugli Lapasov, Ji Hye Park, May Zaw Win, Thu Zar San, Wathone Oo, Kwang Bok Yi
{"title":"Comparative Study on Ammonia Adsorption Characteristics of Various Porous Materials and Ammonia Adsorption Effect According to MgCl2 Impregnation","authors":"Shokhjakhon Dilshod Ugli Lapasov, Ji Hye Park, May Zaw Win, Thu Zar San, Wathone Oo, Kwang Bok Yi","doi":"10.1007/s11814-024-00316-w","DOIUrl":"10.1007/s11814-024-00316-w","url":null,"abstract":"<div><p>Ammonia plays a very important role as a fuel or as a potential source of hydrogen, and its separation and recovery are important in various processes. In this study, an adsorbent that can be applied to PSA processes over a wide temperature range was developed. To select the support, alumina silica, two types of zeolites, and carbon molecular sieves were considered and characterized through BET, TGA, NH<sub>3</sub>-TPD, and high-pressure ammonia isotherm adsorption analyses. An adsorbent, Z-13X, whose adsorption and regeneration characteristics and structure of the support were kept constant was selected, and MgCl<sub>2</sub> was introduced into the support. The effect of introducing MgCl<sub>2</sub> was compared and analyzed according to the metal loading, and the impregnation of a certain amount of MgCl<sub>2</sub> maintained the structural characteristics of Z-13X and improved the adsorption performance. Additionally, it was confirmed that the adsorption performance increased near the initial low pressure and was excellent in terms of regeneration characteristics, heat of adsorption, and NH<sub>3</sub> selectivity.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 2","pages":"257 - 270"},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adenosine-Derivative Functionalized Carbon Nanotubes Considered as Catalysts for Vanadium Flow Batteries","authors":"Mingyu Shin, Yumin Oh, Yongchai Kwon","doi":"10.1007/s11814-024-00324-w","DOIUrl":"10.1007/s11814-024-00324-w","url":null,"abstract":"<div><p>Vanadium flow battery (VFB) is one of the various candidates considered for energy storage systems. To further improve the performance of VFBs, adding functional groups to the surface of carbon nanotube (CNT) to provide more active sites for promoting redox reactions of vanadium ions is one desirable way. For the purpose, adenosine (AD) and adenosine monophosphate (AMP) attached carboxylic acid functionalized CNTs (CACNT) (ADCNT and AMPCNT) are used as the catalysts. Furthermore, proper co-doping of N, O or N, P, O atoms included in AD and AMP may increase diversity of active sites. In this regard, ADCNT and AMPCNT are considered better catalysts than CACNT for increasing the reaction rate of vanadium ions because a large number of hydrophilic groups belonged to ADCNT and AMPCNT can maximize contact between catalyst and electrolyte. Quantitatively, charge transfer resistance is decreased by ~ 37.6% (ADCNT) and ~ 42.3% (AMPCNT), while peak reversibility is ~ 5.8% improved with the new catalysts. Regarding performance evaluations, voltage and energy efficiencies of VFBs using AMPCNT are best even at 250 mA cm<sup>−2</sup>, proving the above benefits of AMPCNT catalyst. Conclusively, this study confirms that larger functional groups compared to those traditionally used can act as effective catalysts, while multi-atom co-doped catalysts can be used for the performance improvement of VFBs.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3821 - 3830"},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weijie Fang, Le Chen, Wenquan Zhou, Jiafan Wang, Kai Huang, Rui Zhu, Jiang Wu, Bangfu Liu, Qi Fang, Xianxuan Wang, Jiachao Wang
{"title":"Design of Homojunction Perovskite Solar-Cell Devices Without Hole-Transport Layer","authors":"Weijie Fang, Le Chen, Wenquan Zhou, Jiafan Wang, Kai Huang, Rui Zhu, Jiang Wu, Bangfu Liu, Qi Fang, Xianxuan Wang, Jiachao Wang","doi":"10.1007/s11814-024-00304-0","DOIUrl":"10.1007/s11814-024-00304-0","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) that lack a hole transport layer (HTL) attract considerable interest because of their straightforward design. This study utilizes the inherent self-doping properties of perovskite to propose a novel homojunction design combining n-FASnI<sub>3</sub> and p-FASnI<sub>3</sub> for efficient HTL-free PSCs. The internal factors affecting the device, such as defect density, electron affinity, bandgap, and doping concentration, are investigated using the solar-cell capacitance simulator (SCAPS-1D). An interfacial defect layer (IDL) is introduced between n-FASnI<sub>3</sub> and TiO<sub>2</sub> to mitigate recombination at interfaces, with related parameters also optimized. Furthermore, the influence of various metal electrodes on PSC performance is examined. Ultimately, the cell achieves an optimized power-conversion efficiency of 30.52%. These findings highlight the bright prospects of homojunction-based HTL-free PSCs. They simplify device structure and production processes while preserving high efficiency. This research lays the groundwork for future industrial applications of HTL-free PSCs in the field of photovoltaics.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 2","pages":"307 - 322"},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryun Na Kim, Jihun Kim, Gui-Min Kim, Doh C. Lee, Whi Dong Kim
{"title":"Photocatalyst Design Principles for Photocatalytic Hydrogen Production and Benzyl Alcohol Oxidation with CdS Nanosheets","authors":"Ryun Na Kim, Jihun Kim, Gui-Min Kim, Doh C. Lee, Whi Dong Kim","doi":"10.1007/s11814-024-00317-9","DOIUrl":"10.1007/s11814-024-00317-9","url":null,"abstract":"<div><p>To produce hydrogen using photocatalysts while maintaining environmentally friendly characteristics, research has focused on using benzyl alcohol (BzOH) as a hole scavenger to convert it into the valuable compound benzaldehyde (BA). However, due to the relatively slow oxidation rate of BzOH compared to conventional hole scavengers, tailored photocatalyst designs are necessary. In this study, we prepared CdS nanosheets (NSs) and introduced Na<sub>2</sub>SO<sub>4</sub>–Na<sub>2</sub>SO<sub>3</sub> and BzOH as hole scavengers to adjust the oxidation half-reaction rate (OHR) during the photocatalytic reaction. Various co-catalysts were introduced to examine how changes in the reduction half-reaction (RHR) and OHR rates influence hydrogen production. The results reveal that the selection of co-catalyst and hole scavenger significantly influences the rate-determining step (RDS) in the photocatalytic reaction. For bare CdS NSs, the slow RHR results in the RDS being the RHR, leading to similar hydrogen production rate regardless of the scavenger type. However, with Pt as a co-catalyst, the RDS shifts to the OHR due to the accelerated RHR, inducing hydrogen production rate highly sensitive to the type of scavenger. Consequently, hydrogen production is significantly reduced when using BzOH, which has a slower oxidation rate. These findings suggest that achieving high hydrogen yields is fundamentally challenging with BzOH due to its slow oxidation rate, even with the introduction of excellent co-catalysts. Therefore, it is imperative to develop photocatalyst materials with lower valence band level for high oxidation power.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 13","pages":"3621 - 3629"},"PeriodicalIF":2.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cutting-Edge Advances in Perovskite Photovoltaic Devices and Applications","authors":"SangMyeong Lee, Hyun Suk Jung","doi":"10.1007/s11814-024-00319-7","DOIUrl":"10.1007/s11814-024-00319-7","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have rapidly emerged as a promising photovoltaic technology, with power conversion efficiencies (PCEs) improving from 3% to over 26% within a decade. This progress positions PSCs as a competitive alternative to traditional silicon-based cells, offering advantages in performance, cost-effectiveness, and flexible applications. The unique ABX<sub>3</sub> crystal structure of perovskites enables tunable optoelectronic properties, making them ideal for a broad spectrum of solar and optoelectronic applications. The high absorption coefficient, long diffusion lengths, and high charge-carrier mobility of PSCs have accelerated their development. However, challenges such as environmental instability and toxic solvent use hinder commercialization. Current research focuses on enhancing stability through passivation, encapsulation, and eco-friendly fabrication methods using solvents like γ-valerolactone. In addition to solar cells, perovskite materials show promise in photodetectors, LEDs, and memristors, making them central to next-generation optoelectronic devices. This review highlights the potential of PSCs while addressing the technological advancements needed for their commercial viability.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 14","pages":"3703 - 3715"},"PeriodicalIF":2.9,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}