双酶偶联体系在大肠杆菌中高效生物催化生产androsta -1,4-二烯-3,17-二酮

IF 3.2 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Zijuan Tao, Yusong Zhang, Yanmei Dai, Liangli Luo, Changshun Huang, Lan Tang, Hanbing Shi, Zhimin Ou
{"title":"双酶偶联体系在大肠杆菌中高效生物催化生产androsta -1,4-二烯-3,17-二酮","authors":"Zijuan Tao,&nbsp;Yusong Zhang,&nbsp;Yanmei Dai,&nbsp;Liangli Luo,&nbsp;Changshun Huang,&nbsp;Lan Tang,&nbsp;Hanbing Shi,&nbsp;Zhimin Ou","doi":"10.1007/s11814-025-00503-3","DOIUrl":null,"url":null,"abstract":"<div><p>Androsta-1,4-diene-3,17-dione (ADD) is a key intermediate in the synthesis of various steroidal pharmaceuticals, but the biocatalytic conversion of androst-4-ene-3,17-dione (AD) to ADD is limited by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a byproduct that inhibits the enzyme 3-ketosteroid-∆1-dehydrogenase (KstD). This study aimed to improve the bioconversion efficiency by introducing catalase (katA) to decompose H<sub>2</sub>O<sub>2</sub>, thereby alleviating its toxic effects on the enzyme. The <i>kstD</i><sub><i>2</i></sub> gene from <i>Mycobacterium neoaurum</i> DSM 1381 was mutated using error-prone PCR to generate the KstD<sub>2</sub><sup>ep</sup> variant, which was then coupled with the <i>katA</i> gene in <i>E. coli</i> strains. The engineered strain <i>E. coli</i> BL21-pET28a-KstD<sub>2</sub><sup>ep</sup>-L-katA exhibited the highest catalytic efficiency under optimized conditions, achieving a 98.6% conversion of 40 g/L AD to ADD in 14 h (optimized conditions: 40 °C, pH 8.0, 40 g/L wet cell concentration, and 1:1 cosolvent HP-β-CD with AD). Fermentation in a 5L fermenter further increased the conversion to 98.2%, using 80 g/L AD in repeated batch feeding, significantly improving the conversion efficiency compared to shake flask conditions. These results suggest that the coupled KstD<sub>2</sub><sup>ep</sup> and catalase system, along with optimized fermentation parameters, could provide an efficient and scalable biocatalytic process for the industrial production of ADD and related steroidal compounds.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 11","pages":"2497 - 2511"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Biocatalytic Production of Androsta-1,4-diene-3,17-dione via a Dual-Enzyme Coupling System in Escherichia coli\",\"authors\":\"Zijuan Tao,&nbsp;Yusong Zhang,&nbsp;Yanmei Dai,&nbsp;Liangli Luo,&nbsp;Changshun Huang,&nbsp;Lan Tang,&nbsp;Hanbing Shi,&nbsp;Zhimin Ou\",\"doi\":\"10.1007/s11814-025-00503-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Androsta-1,4-diene-3,17-dione (ADD) is a key intermediate in the synthesis of various steroidal pharmaceuticals, but the biocatalytic conversion of androst-4-ene-3,17-dione (AD) to ADD is limited by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a byproduct that inhibits the enzyme 3-ketosteroid-∆1-dehydrogenase (KstD). This study aimed to improve the bioconversion efficiency by introducing catalase (katA) to decompose H<sub>2</sub>O<sub>2</sub>, thereby alleviating its toxic effects on the enzyme. The <i>kstD</i><sub><i>2</i></sub> gene from <i>Mycobacterium neoaurum</i> DSM 1381 was mutated using error-prone PCR to generate the KstD<sub>2</sub><sup>ep</sup> variant, which was then coupled with the <i>katA</i> gene in <i>E. coli</i> strains. The engineered strain <i>E. coli</i> BL21-pET28a-KstD<sub>2</sub><sup>ep</sup>-L-katA exhibited the highest catalytic efficiency under optimized conditions, achieving a 98.6% conversion of 40 g/L AD to ADD in 14 h (optimized conditions: 40 °C, pH 8.0, 40 g/L wet cell concentration, and 1:1 cosolvent HP-β-CD with AD). Fermentation in a 5L fermenter further increased the conversion to 98.2%, using 80 g/L AD in repeated batch feeding, significantly improving the conversion efficiency compared to shake flask conditions. These results suggest that the coupled KstD<sub>2</sub><sup>ep</sup> and catalase system, along with optimized fermentation parameters, could provide an efficient and scalable biocatalytic process for the industrial production of ADD and related steroidal compounds.</p></div>\",\"PeriodicalId\":684,\"journal\":{\"name\":\"Korean Journal of Chemical Engineering\",\"volume\":\"42 11\",\"pages\":\"2497 - 2511\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11814-025-00503-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-025-00503-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

androst- 1,4-二烯-3,17-二酮(ADD)是合成各种甾体药物的关键中间体,但androst-4-烯-3,17-二酮(AD)转化为ADD的生物催化作用受到过氧化氢(H2O2)的限制,过氧化氢是抑制3-酮类固醇-∆1-脱氢酶(KstD)的副产物。本研究旨在通过引入过氧化氢酶(katA)分解H2O2来提高生物转化效率,从而减轻过氧化氢酶对H2O2的毒性作用。利用易出错PCR技术对新金黄色分枝杆菌DSM 1381的kstD2基因进行突变,生成KstD2ep变异,并将其与大肠杆菌菌株的katA基因偶联。在优化条件下,工程菌株bl21 - pet28a - kstd2epp -L- kata的催化效率最高,在14 h内将40 g/L AD转化为ADD,转化率为98.6%(优化条件为:40℃,pH 8.0,湿细胞浓度40 g/L,共溶剂HP-β-CD与AD的比例为1:1)。在5L发酵罐中发酵,使用80 g/L AD重复分批进料,转化率进一步提高到98.2%,与摇瓶条件相比,转化率显著提高。上述结果表明,KstD2ep与过氧化氢酶偶联体系以及优化的发酵参数可为工业生产ADD及相关甾体化合物提供高效、可扩展的生物催化工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Efficiency Biocatalytic Production of Androsta-1,4-diene-3,17-dione via a Dual-Enzyme Coupling System in Escherichia coli

High-Efficiency Biocatalytic Production of Androsta-1,4-diene-3,17-dione via a Dual-Enzyme Coupling System in Escherichia coli

High-Efficiency Biocatalytic Production of Androsta-1,4-diene-3,17-dione via a Dual-Enzyme Coupling System in Escherichia coli

Androsta-1,4-diene-3,17-dione (ADD) is a key intermediate in the synthesis of various steroidal pharmaceuticals, but the biocatalytic conversion of androst-4-ene-3,17-dione (AD) to ADD is limited by hydrogen peroxide (H2O2), a byproduct that inhibits the enzyme 3-ketosteroid-∆1-dehydrogenase (KstD). This study aimed to improve the bioconversion efficiency by introducing catalase (katA) to decompose H2O2, thereby alleviating its toxic effects on the enzyme. The kstD2 gene from Mycobacterium neoaurum DSM 1381 was mutated using error-prone PCR to generate the KstD2ep variant, which was then coupled with the katA gene in E. coli strains. The engineered strain E. coli BL21-pET28a-KstD2ep-L-katA exhibited the highest catalytic efficiency under optimized conditions, achieving a 98.6% conversion of 40 g/L AD to ADD in 14 h (optimized conditions: 40 °C, pH 8.0, 40 g/L wet cell concentration, and 1:1 cosolvent HP-β-CD with AD). Fermentation in a 5L fermenter further increased the conversion to 98.2%, using 80 g/L AD in repeated batch feeding, significantly improving the conversion efficiency compared to shake flask conditions. These results suggest that the coupled KstD2ep and catalase system, along with optimized fermentation parameters, could provide an efficient and scalable biocatalytic process for the industrial production of ADD and related steroidal compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信