Journal of Nanoparticle Research最新文献

筛选
英文 中文
Synthesis of enhanced imidazolium ionic liquid and amino immoblised mesoporous silica supported ruthenium nanoparticle for H2 generation from NaBH4 增强型咪唑离子液体及氨基固定化介孔二氧化硅负载纳米钌的合成
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-12 DOI: 10.1007/s11051-025-06254-w
Hind Alshaikh
{"title":"Synthesis of enhanced imidazolium ionic liquid and amino immoblised mesoporous silica supported ruthenium nanoparticle for H2 generation from NaBH4","authors":"Hind Alshaikh","doi":"10.1007/s11051-025-06254-w","DOIUrl":"10.1007/s11051-025-06254-w","url":null,"abstract":"<div><p>The new supported mesoporous nanoparticles RuNPs, decorated as RuNPs@[KIT-6]-NH<sub>2</sub> <b>4</b> and RuNPs@[KIT-6]-NH<sub>2</sub>-imid <b>5</b>, were synthesized by a chemical modification of silica surface procedure utilizing the [KIT-6] <b>1</b>, then RuCl<sub>3</sub>.3H<sub>2</sub>O reduced by sodium borohydride. RuNPs <b>4</b> and <b>5</b> were characterised by <sup>29</sup>Si solid-state NMR, SEM, XPS, and TEM. The influence of different factors, for example, reaction time, temperature, catalyst loading, and concentration of NBH<sub>4</sub>, were examined to achieve the best catalytic conditions. RuNPs <b>4</b> and <b>5</b> catalyse the release of H<sub>2</sub> from sodium borohydride with remarkable proficiencies, and RuNP <b>5</b> catalyst was found to be more effective than its counterpart <b>4</b>. The hydrolytic reaction generates H<sub>2</sub> in the presence of (2 mg, 0.18 mol) of catalyst <b>5</b> at 20 °C conducting 163.3 mole<sub>H2</sub> mol<sub>cat</sub><sup>−1</sup> min<sup>−1</sup> of TOF. The study of kinetics discovered that the hydrogen generation process is first order with activation energy E<sub>a</sub> of 35.7 kJ mol<sup>−1</sup> for both catalysts <b>5</b> and <b>4</b>. The RuNPs <b>5</b> efficacy for the H<sub>2</sub> production reaction of NaBH<sub>4</sub> was conducted in D<sub>2</sub>O and H<sub>2</sub>O showed that the catalytic process is significantly more rapid in water than in D<sub>2</sub>O indicating the solvent isotope KIE <i>k</i><sub><i>H</i></sub><i>/k</i><sub><i>D</i></sub> = 1.5 which is consistent with the determination step of rate includes cleavage of O–H of H<sub>2</sub>O. This difference in this initial value of rate may be due to not occurring the bond cleavage of B–OD in the determination step of rate. Furthermore, the good repeatability of catalytic hydrolysis for RuNPs based [KIT]-NH<sub>2</sub>-imid mesoporous silica <b>5</b> retains 87% of the primary catalytic activity after the 4th runs.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of green-emitting InP-based quantum dots with controlled shell thickness and their photoluminescence quantum yield upon silica encapsulation 可控壳厚的绿色发光inp基量子点的制备及其硅包封后的光致发光量子产率
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-12 DOI: 10.1007/s11051-025-06258-6
N. Murase, T. Sawai, R. Mori, K. Inada, D. Eguchi, N. Tamai
{"title":"Preparation of green-emitting InP-based quantum dots with controlled shell thickness and their photoluminescence quantum yield upon silica encapsulation","authors":"N. Murase,&nbsp;T. Sawai,&nbsp;R. Mori,&nbsp;K. Inada,&nbsp;D. Eguchi,&nbsp;N. Tamai","doi":"10.1007/s11051-025-06258-6","DOIUrl":"10.1007/s11051-025-06258-6","url":null,"abstract":"<div><p>Silica encapsulation of colloidal quantum dots (QDs) is an effective method for preserving their distinctive photoluminescence properties. However, applying this encapsulation method, initially developed for CdSe-based QDs, to InP-based QDs results in a significant decrease in photoluminescence quantum yield (PLQY). To understand this discrepancy, we prepared three types of QDs (InP/(ZnSe)<sub>n</sub>/ZnS, with <i>n</i> = 4, 6, 8 monolayers) that emit in the green region and encapsulated them into silica particles (~ 30 nm in size, typically containing ~ 10 QDs per particle). Increasing the thickness of the intermediate ZnSe layer from 1.3 (4 monolayers) to 2.7 nm (8 monolayers) using the same core size (1.6 nm) effectively suppressed the decrease in PLQY after encapsulation. Quantum mechanical calculation revealed that compared to CdSe-based QDs, the excited electron in InP-based QDs tends to spread significantly due to the lighter effective electron mass and lower barrier height from the InP core to the ZnSe and ZnS shells. As the ZnSe layer thickness increases, the amount of spread electron reduces, thereby better maintaining the PLQY after encapsulation. The calculations further suggest that larger cores (&gt; 2.2 nm) and thicker shells (&gt; 2.5 nm) are preferable for achieving high PLQY after silica encapsulation. This knowledge serves as a guideline for developing ideal QDs with bright, robust, and non-toxic features as user-friendly phosphors.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing magnetomechanical anticancer therapy: impact of nanoparticle aggregation 增强磁力学抗癌疗法:纳米粒子聚集的影响
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-05 DOI: 10.1007/s11051-025-06271-9
Artem A. Pianykh, Ivan L. Isaev, Sergey V. Komogortsev, Polina N. Semina, Artem S. Kostyukov, Daniil E. Khrennikov, Vladimir A. Felk, Sergey P. Polyutov, Sergey V. Karpov
{"title":"Enhancing magnetomechanical anticancer therapy: impact of nanoparticle aggregation","authors":"Artem A. Pianykh,&nbsp;Ivan L. Isaev,&nbsp;Sergey V. Komogortsev,&nbsp;Polina N. Semina,&nbsp;Artem S. Kostyukov,&nbsp;Daniil E. Khrennikov,&nbsp;Vladimir A. Felk,&nbsp;Sergey P. Polyutov,&nbsp;Sergey V. Karpov","doi":"10.1007/s11051-025-06271-9","DOIUrl":"10.1007/s11051-025-06271-9","url":null,"abstract":"<div><p>The paper provides a comprehensive analytical and numerical examination of the properties of single-domain superparamagnetic magnetite nanoparticles, aiming to devise strategies for selectively damaging the membranes of malignant cells and enhancing anticancer magnetomechanical therapy. It highlights the potential formation of anisotropic aggregates composed of multiple magnetite nanoparticles even in the absence of an external magnetic field. These aggregates, when combined with gold nanoparticles, can selectively bind to mechanoreceptors on the membranes of malignant cells employing aptamers. The aggregation process suppresses thermal fluctuations of the intrinsic magnetic moments of individual particles, thanks to the collective magnetic field generated by the resulting subaggregates. As a result, these nanoparticle aggregates demonstrate stabilization of their total magnetic moment driven by this cooperative behavior. The growth of aggregates of magnetic nanoparticles is accompanied by an increase in the total magnetic moment of the aggregates and the strength of the mechanical effect on cell mechanoreceptors. This enhanced interaction can contribute to the programmed death of malignant cells (apoptosis) in malignant cells when exposed to an alternating magnetic field. The analysis presented makes it possible to explain the experimental results from magnetomechanical therapy utilizing gold and magnetite nanoparticles, which effectively suppresses Ehrlich carcinoma both in vivo and in vitro within an alternating magnetic field. These results affirm the promising potential for implementing this method as a highly effective treatment for malignant tumors.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring borophene: pioneering trends in energy storage materials 探索硼吩:储能材料的先驱趋势
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-04 DOI: 10.1007/s11051-025-06225-1
Shruti Gupta, Neelaambhigai Mayilswamy, Balasubramanian Kandasubramanian, Ajay Kumar, Seyedeh Sadrieh Emadian, Satheesh Krishnamurthy
{"title":"Exploring borophene: pioneering trends in energy storage materials","authors":"Shruti Gupta,&nbsp;Neelaambhigai Mayilswamy,&nbsp;Balasubramanian Kandasubramanian,&nbsp;Ajay Kumar,&nbsp;Seyedeh Sadrieh Emadian,&nbsp;Satheesh Krishnamurthy","doi":"10.1007/s11051-025-06225-1","DOIUrl":"10.1007/s11051-025-06225-1","url":null,"abstract":"<div><p>Borophene, a two-dimensional (2D) monolayer of boron atoms, corroborated phenomenal growth for its exceptional anisotropic properties, including high surface area, tunable bandgap, and superior electronic conductivity, positioning it as a cutting-edge material for energy storage applications. This review critically assesses borophene’s potential, emphasizing its remarkable theoretical storage capacities for Li-ion and Na-ion batteries, underpinned by ultrafast ion-diffusion pathways with minimal energy-barriers and bandgap (9.43eV in zigzag-direction) (Duo et al. Coord Chem Rev 427: 213549, 2021). Advanced density functional theory simulations elucidate borophene’s structural stability, ion-transport mechanisms, and tunable electronic properties achieved through carrier doping, defect engineering, and strain modulation. The review highlights novel synthesis strategies, such as plasma ion-implantation on unconventional substrates like carbon cloth and silicon, mitigating existing fabrication bottlenecks. Experimental validations confirm borophene’s superior electrochemical performance, demonstrating exceptional electrocatalytic activity with low overpotentials for hydrogen evolution reactions and high specific capacitance in supercapacitors. Concomitantly, various approaches encompassing carrier-doping, external-strain, and defect formation that assist in tuning the features of borophene have been discussed briefly in this study. By integrating theoretical insights with experimental advancements, this study identifies critical research-gaps and presents critical discussions and roadmap for leveraging borophene’s anisotropic features in next-generation energy storage systems, advancing the frontier of 2D-materials for sustainable energy technologies.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives 石墨烯增强纳米钛聚合物涂层的抗腐蚀性能和形态性能
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-04 DOI: 10.1007/s11051-025-06222-4
Bo Wang, Tao Wan, Shicheng Wei, Yujiang Wang, Wei Huang, Yi Liang, Junqi Li
{"title":"Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives","authors":"Bo Wang,&nbsp;Tao Wan,&nbsp;Shicheng Wei,&nbsp;Yujiang Wang,&nbsp;Wei Huang,&nbsp;Yi Liang,&nbsp;Junqi Li","doi":"10.1007/s11051-025-06222-4","DOIUrl":"10.1007/s11051-025-06222-4","url":null,"abstract":"<div><p>Corrosion is a widespread issue affecting many aspects of daily life. To further improve the anti-corrosion performance of nano-Ti polymer coatings from our previous research, graphene slurry is filled to modify nano-Ti epoxy resin coatings. The structure, anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer functional coatings with different graphene slurry were systemically investigated by field emission scanning microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), immersion test, electrochemical measurements, and wear test. The FE-SEM results showed that graphene can be well dispersed in nano-Ti polymer coating when the graphene content is 0.5 wt%. Furthermore, the results showed that the addition of graphene can improve the anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer coatings. The water uptake of nano-Ti polymer/graphene functional coatings was reduced from 2.4 to 0.05%. The friction coefficient of the coatings also decreased from 0.53 to 0.22 due to the good dispersion of graphene slurry. The corrosion resistance of the functional coatings decreased with increasing graphene slurry. Nano-Ti polymer/graphene functional coatings showed optimal comprehensive performance and anti-corrosion performance as the graphene content was 0.5 wt%; the appropriate amount of graphene slurry can effectively improve the anti-corrosion performance of the nano-Ti polymer coating.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compression-induced phase transitions in supercooled liquid and glassy confined germanene 过冷液体和玻璃约束锗烯的压缩诱导相变
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-04 DOI: 10.1007/s11051-025-06269-3
Vo Van Hoang, Nguyen Hoang Giang, Vladimir Bubanja
{"title":"Compression-induced phase transitions in supercooled liquid and glassy confined germanene","authors":"Vo Van Hoang,&nbsp;Nguyen Hoang Giang,&nbsp;Vladimir Bubanja","doi":"10.1007/s11051-025-06269-3","DOIUrl":"10.1007/s11051-025-06269-3","url":null,"abstract":"<div><p>Compression-induced phase transitions in supercooled liquid and glassy confined germanene are studied via molecular dynamics (MD) simulations. Glassy state is obtained by cooling from the melt to 300 K under zero pressure. Then, some selected atomic configurations at temperatures above and below <span>({T}_{g})</span> are taken as initial supercooled liquid or glassy two-dimensional (2D) models for the isothermal compression from low-density to high-density states in order to study compression-induced phase transitions in the models. We find formation of the triangular-hexa (<i>trh</i>) germanene as the most stable state in the high-density region. Moreover, we find the compression-induced amorphization of supercooled liquid and amorphous-amorphous phase transitions in the system.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface engineering of MoS2 nanosheets by silver (Agn) nanoclusters to enhance the adsorption and gas sensing performance: a DFT study 用银(Agn)纳米团簇对二硫化钼纳米片进行表面工程以增强吸附和气敏性能:DFT研究
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-04 DOI: 10.1007/s11051-025-06263-9
Rafid Jihad Albadr, Waam Mohammed Taher, Mariem Alwan, Soumya V. Menon, Mamata Chahar, Rajni Verma, Abhayveer Singh, M. Ravi Kumar, Mahmood Jasem Jawad, Hiba Mushtaq, Muhamed alfouroon
{"title":"Surface engineering of MoS2 nanosheets by silver (Agn) nanoclusters to enhance the adsorption and gas sensing performance: a DFT study","authors":"Rafid Jihad Albadr,&nbsp;Waam Mohammed Taher,&nbsp;Mariem Alwan,&nbsp;Soumya V. Menon,&nbsp;Mamata Chahar,&nbsp;Rajni Verma,&nbsp;Abhayveer Singh,&nbsp;M. Ravi Kumar,&nbsp;Mahmood Jasem Jawad,&nbsp;Hiba Mushtaq,&nbsp;Muhamed alfouroon","doi":"10.1007/s11051-025-06263-9","DOIUrl":"10.1007/s11051-025-06263-9","url":null,"abstract":"<div><p>In this work, the interactions of ethylene oxide (C<sub>2</sub>H<sub>4</sub>O) molecule over the MoS<sub>2</sub> monolayers functionalized with different clusters of Ag atoms were investigated using density functional theory outlook. Our obtained results confirmed that Ag cluster–modified MoS<sub>2</sub> nanosheets had excellent adsorption capacity for ethylene oxide molecules. The variations in the electronic properties were explained based on the band structure and charge density redistribution analyses. Our charge density distribution calculations represented the large collection of atomic charges above the adsorbed molecules. By plotting the projected density of states, we described the interaction occurred between the oxygen atoms of ethylene oxide molecules and Ag clusters. Adsorption distance, energies, angles, and other structural factors were also calculated for describing the results. Therefore, based on our results, we can propose the Ag cluster–modified MoS<sub>2</sub> systems as effective ethylene oxide (C<sub>2</sub>H<sub>4</sub>O) detection devices for real phase applications.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and in vitro cellular activity assessment of photodynamic composite nanocarriers for gliomas treatment 用于胶质瘤治疗的光动力复合纳米载体的特性和体外细胞活性评估
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-01 DOI: 10.1007/s11051-025-06268-4
Yongxu Yang, Wenxiu Li, Junhong Zhou, Yang Yu, Shujie Liu, Qing Xu
{"title":"Characterization and in vitro cellular activity assessment of photodynamic composite nanocarriers for gliomas treatment","authors":"Yongxu Yang,&nbsp;Wenxiu Li,&nbsp;Junhong Zhou,&nbsp;Yang Yu,&nbsp;Shujie Liu,&nbsp;Qing Xu","doi":"10.1007/s11051-025-06268-4","DOIUrl":"10.1007/s11051-025-06268-4","url":null,"abstract":"<div><p>Glioblastoma (GBM) originates from cancerous cells of the central nervous system (CNS) in the brain and spinal cord, and is the most common malignant primary tumor in brain tumors, with a high degree of aggressiveness and resistance to treatment, accounting for 48.6% of CNS malignant tumors. Although metal–organic frameworks (MOFs) have been widely used in drug delivery, developing nanocarriers with both high stability and biocompatibility remains a significant challenge. This study developed a novel composite nano drug delivery system, PLGA-PDI@CP1@1, which combines poly(lactic-co-glycolic acid) (PLGA) and perylene diimide (PDI) with excellent fluorescence properties to effectively encapsulate MOF-based CP1. The system was further loaded with an active compound extracted from ginseng (compound 1) for the treatment of gliomas. Through in vitro cellular experiments, we found that PLGA-PDI@CP1@1 was able to inhibit the proliferation of cancer cells by suppressing the expression of the glioma proliferation-associated gene MAGED4.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-dependent cohesive energy, melting temperature, and debye temperature of Ag and Au nanoparticles: a theoretical and comparative study 银和金纳米颗粒的尺寸依赖结合能、熔化温度和debye温度:理论和比较研究
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-03-01 DOI: 10.1007/s11051-025-06267-5
Sirouhin Fawaz Khalaf, Saeed Naif Turki AL-Rashid
{"title":"Size-dependent cohesive energy, melting temperature, and debye temperature of Ag and Au nanoparticles: a theoretical and comparative study","authors":"Sirouhin Fawaz Khalaf,&nbsp;Saeed Naif Turki AL-Rashid","doi":"10.1007/s11051-025-06267-5","DOIUrl":"10.1007/s11051-025-06267-5","url":null,"abstract":"<div><p>The thermodynamic and vibrational behavior of nanoparticles is known to exhibit unusual size dependent properties. We present the results of a theoretical model for the cohesive energy, melting temperature and Debye temperature of silver (Ag) and gold (Au) nanoparticles, developed and analyzed using computer simulations in MATLAB, and validated against experimental data and other theoretical predictions. The results indicate that nanoparticles have lower cohesive energies because of the surface atoms that dominate, resulting in lower melting and Debye temperatures with decreasing particle size. The cohesive energy of Ag nanoparticles decreases from ~ 285 kJ/mol in the bulk to ~ 230 kJ/mol at 5 nm, accompanied by a corresponding decrease in the melting temperature from 1235 K to ~ 700 K, Debye temperature from 230 K to ~ 100 K. The cohesive energy of Au nanoparticles lowers from ~ 368 kJ/mol for bulk to ~ 300 kJ/mol for 5 nm, and the melting temperature and Debye temperature drop from 1337 and 415K, respectively, to around ~ 600K and ~ 200K simultaneously. The experimentally observed and theoretically predicted size dependent trends in these properties are consistent with these trends showing that these properties are intertwined by the atomic bonding strength and vibrational dynamics. All three properties are higher for Au due to stronger metallic bonding. These results offer valuable insights for the design and optimization of metallic nanoparticles in therapeutic cargo delivery, as well as for catalysis, thermal management, and advanced material processing.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Instant nanocapsule formulation based on self-assembly of alginate with quaternary ammonium to improve the encapsulation efficiency, photostability, and insecticidal activity of emamectin benzoate 以海藻酸盐与季铵自组装为基础,制备快速纳米胶囊,提高其包封效率、光稳定性和杀虫活性
IF 2.1 4区 材料科学
Journal of Nanoparticle Research Pub Date : 2025-02-28 DOI: 10.1007/s11051-025-06266-6
Xiaoqiu Wen, Fengjun Cai, Qiao Yang, Yunfang Zhang, Shengqian Wu, Min Zhang, Lin Ma
{"title":"Instant nanocapsule formulation based on self-assembly of alginate with quaternary ammonium to improve the encapsulation efficiency, photostability, and insecticidal activity of emamectin benzoate","authors":"Xiaoqiu Wen,&nbsp;Fengjun Cai,&nbsp;Qiao Yang,&nbsp;Yunfang Zhang,&nbsp;Shengqian Wu,&nbsp;Min Zhang,&nbsp;Lin Ma","doi":"10.1007/s11051-025-06266-6","DOIUrl":"10.1007/s11051-025-06266-6","url":null,"abstract":"<div><p>Nanocapsule was obtained by self-assembling of sodium alginate (SA) with cetyl trimethyl ammonium bromide (CTAB) and Tween 80 in a coarse dispersion of butyl acetate and turned out to be a good carrier of emamectin benzoate (EB). The nanocapsule exhibited better storing stability, anti-photolysis property, foliar wettability, and retention, as compared to the conventional concentrated emulsion of EB (EB-EC). Incorporation into the nanocapsule retarded the release of EB, which was pH-sensitive and dependent on the structure of the nanocapsule. A better sustaining effect could be achieved by an increase of SA or a reduction of CTAB and in a basic environment, due to the enhanced interaction between the active ingredient and the shell matrix of the nanocapsule. The incorporation into the nanocapsule greatly increased the activity of EB. The median lethal concentration of typical positively charged nanocapsule EB@SA<sub>0.1</sub>CTAB<sub>0.4</sub>Tw<sub>0.2</sub> against <i>Mythimna separata</i> larvae was 48% of that of commercial EB-EC, after feeding to the insect for 48 h. The result indicated that the self-assembling of SA and CTAB was a good strategy to fabricate instant nanoformulation under mild conditions and with high efficiency and low cost, which was valuable to prompt nanopesticides from laboratory investigation to field application.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信