用CdSeTe量子点修饰矿物油,提高了高压应用中的稳定性和介电性能

IF 2.6 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yunus Biçen, Erdem Elibol, Tuna Demirci
{"title":"用CdSeTe量子点修饰矿物油,提高了高压应用中的稳定性和介电性能","authors":"Yunus Biçen,&nbsp;Erdem Elibol,&nbsp;Tuna Demirci","doi":"10.1007/s11051-025-06389-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study explored the application of CdSeTe quantum dots (QDs) in mineral oils for high-voltage applications through a comprehensive approach. CdSeTe QDs were synthesized using an organometallic method and added to mineral oil at concentrations of 1 mg/L (C1), 5 mg/L (C2), and 10 mg/L (C3). The samples’ stability condition was monitored for a long period, and physicochemical tests were performed. Experimental results show that QD-modified oils have enhanced electrical properties compared to the base oil. The breakdown voltage was in the range of 17 to 23 kV for the base oil, while the breakdown voltage was in the range of 20 to 39 kV for the QD-modified (C2) insulating fluid sample. Throughout the 25-day monitoring period, the QDs were found to be properly dispersed in oil and free of aggregation in all samples. Values such as density and viscosity remained fairly constant due to the relatively low concentration ratio. However, an increase in total acid number was observed with increasing concentration. These results imply that QD-enhanced insulation oils may have applications in high-voltage applications in the future. The main innovation of this study lies in demonstrating that CdSeTe QDs can significantly enhance the dielectric strength of mineral oils while maintaining their essential physicochemical properties, offering a novel approach for improving insulation performance in high-voltage applications.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineral oils modified with CdSeTe QDs for improved stability and dielectric performance in high-voltage applications\",\"authors\":\"Yunus Biçen,&nbsp;Erdem Elibol,&nbsp;Tuna Demirci\",\"doi\":\"10.1007/s11051-025-06389-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explored the application of CdSeTe quantum dots (QDs) in mineral oils for high-voltage applications through a comprehensive approach. CdSeTe QDs were synthesized using an organometallic method and added to mineral oil at concentrations of 1 mg/L (C1), 5 mg/L (C2), and 10 mg/L (C3). The samples’ stability condition was monitored for a long period, and physicochemical tests were performed. Experimental results show that QD-modified oils have enhanced electrical properties compared to the base oil. The breakdown voltage was in the range of 17 to 23 kV for the base oil, while the breakdown voltage was in the range of 20 to 39 kV for the QD-modified (C2) insulating fluid sample. Throughout the 25-day monitoring period, the QDs were found to be properly dispersed in oil and free of aggregation in all samples. Values such as density and viscosity remained fairly constant due to the relatively low concentration ratio. However, an increase in total acid number was observed with increasing concentration. These results imply that QD-enhanced insulation oils may have applications in high-voltage applications in the future. The main innovation of this study lies in demonstrating that CdSeTe QDs can significantly enhance the dielectric strength of mineral oils while maintaining their essential physicochemical properties, offering a novel approach for improving insulation performance in high-voltage applications.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"27 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-025-06389-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06389-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过综合的方法探索了CdSeTe量子点(QDs)在高压矿物油中的应用。采用有机金属法合成CdSeTe量子点,并分别以1 mg/L (C1)、5 mg/L (C2)和10 mg/L (C3)的浓度加入矿物油中。对样品进行了长期的稳定性监测,并进行了理化试验。实验结果表明,与基础油相比,量子点改性油的电性能有所提高。基础油的击穿电压范围为17 ~ 23 kV, qd改性(C2)绝缘液样品的击穿电压范围为20 ~ 39 kV。在25天的监测期内,所有样品的量子点分布在油中,没有聚集。由于相对较低的浓度比,密度和粘度等值保持相当恒定。总酸数随浓度的增加而增加。这些结果表明,量子点增强绝缘油在未来的高压应用中可能会有应用。本研究的主要创新之处在于证明了CdSeTe量子点可以显著提高矿物油的介电强度,同时保持其基本的物理化学性质,为提高高压应用中的绝缘性能提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mineral oils modified with CdSeTe QDs for improved stability and dielectric performance in high-voltage applications

Mineral oils modified with CdSeTe QDs for improved stability and dielectric performance in high-voltage applications

This study explored the application of CdSeTe quantum dots (QDs) in mineral oils for high-voltage applications through a comprehensive approach. CdSeTe QDs were synthesized using an organometallic method and added to mineral oil at concentrations of 1 mg/L (C1), 5 mg/L (C2), and 10 mg/L (C3). The samples’ stability condition was monitored for a long period, and physicochemical tests were performed. Experimental results show that QD-modified oils have enhanced electrical properties compared to the base oil. The breakdown voltage was in the range of 17 to 23 kV for the base oil, while the breakdown voltage was in the range of 20 to 39 kV for the QD-modified (C2) insulating fluid sample. Throughout the 25-day monitoring period, the QDs were found to be properly dispersed in oil and free of aggregation in all samples. Values such as density and viscosity remained fairly constant due to the relatively low concentration ratio. However, an increase in total acid number was observed with increasing concentration. These results imply that QD-enhanced insulation oils may have applications in high-voltage applications in the future. The main innovation of this study lies in demonstrating that CdSeTe QDs can significantly enhance the dielectric strength of mineral oils while maintaining their essential physicochemical properties, offering a novel approach for improving insulation performance in high-voltage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信