{"title":"Cross-Correlation of Interconnection Technologies—A Case Study of Reduced Wire Bond Quality after Ultrasonic Welding","authors":"A. Groth, M. Hempel","doi":"10.1007/s11665-024-10313-z","DOIUrl":"10.1007/s11665-024-10313-z","url":null,"abstract":"<div><p>In modern electronic modules, the packing density of components is increasing. This means that the points at which different assembly and connection technologies are used are moving closer and closer together. This significantly increases the probability of mutual interference. The negative effects of later process steps in particular can be critical here. In the present work, a typical case for power electronics production is considered, consisting of thick-wire bonding on the power semiconductor and subsequent ultrasonic welding of load terminals on the same substrate. The effect on the quality of the bond connections was investigated in setups with different load geometries, materials and load intensities. It was found that both wire damage due to cyclic mechanical alternating loading and a change in the interface between substrate and wire occurred. In the case of harder wire materials, complete breakage of the wire connections was observed after just 24 welds on terminals in typical geometries. However, the interface between the wire and the substrate was also damaged and lost 10% of its strength in this case. The investigations show how such effects can be minimized by the choice of wire material and geometry. This is another important building block in holistic process development, taking into account the interactions between different interconnection processes.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 6","pages":"4546 - 4554"},"PeriodicalIF":2.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10313-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing the In Vitro Tribocorrosion Resistance of Titanium Alloy by Precipitation of Nano-Ti2Cu Phases","authors":"Xiaoyan Wang, Yijing Gao, Mianmian Bao, Ying Liu, Lei Yang, Erlin Zhang","doi":"10.1007/s11665-024-10121-5","DOIUrl":"10.1007/s11665-024-10121-5","url":null,"abstract":"<p>Compared with traditional Ti-based biomaterials, in recent years Cu-bearing titanium alloys have been considered among the most attractive metallic biomaterials for oral implants, owing to their excellent antibacterial properties. In this paper, the effects of the Cu content, the existing form of Cu element, and the oral environment on the tribocorrosion resistance of Ti-Cu alloys were investigated in comparison with pure titanium (cp-Ti). The results revealed that a low pH and (especially) a high fluoride ion concentration accelerated the tribocorrosion. The Ti-Cu alloys showed a higher tribocorrosion resistance than cp-Ti in all the simulated solutions tested, owing to the precipitation of nano-Ti<sub>2</sub>Cu during the aging treatment.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"12966 - 12975"},"PeriodicalIF":2.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chintada Umasankar, Apoorv Sobti, S. Sankaran, Uday Chakkingal
{"title":"Influence of Quenching and Partitioning Times on Austenite Stability and Tensile Properties of CMnAlSi Quenching and Partitioning Steel","authors":"Chintada Umasankar, Apoorv Sobti, S. Sankaran, Uday Chakkingal","doi":"10.1007/s11665-024-10310-2","DOIUrl":"10.1007/s11665-024-10310-2","url":null,"abstract":"<div><p>Quenching and partitioning (Q&P) steels have emerged as highly promising contenders for automotive applications due to their exceptional blend of high strength and ductility, achieved through transformation-induced plasticity associated with retained austenite (RA). Hence, ensuring precise tailoring of RA content and morphology is crucial for Q&P steels. The present investigation aims to study the effect of quenching and partitioning times on RA stability, and the mechanical properties of 0.26C-1.87Mn-0.99Al-0.45Si steel subjected to hot rolling followed by direct quenching and partitioning (DQP). This present research introduces a new microstructural-based approach for identifying the optimal quenching and partitioning times to achieve a microstructure comprising of thin films of inter-lath austenite between martensite laths. DQP steels with longer quenching time exhibit blocky RA islands of smaller sizes. On the other hand, with a shorter quenching time, the microstructure contains a larger fraction of RA with higher carbon content, and this RA is predominantly film type along with small-sized blocky RA islands. This results in an excellent combination of mechanical properties (UTS of 1250 ± 39 MPa and % elongation to failure of 16%). The post-tensile microstructures were also examined using transmission electron microscopy, and film-type RA appears more resistant to strain-induced transformation.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"13311 - 13326"},"PeriodicalIF":2.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ch. Jagadeeswara Rao, M. Aishwarya, Avinash Kumar, P. Thilagavathy, S. Ningshen
{"title":"Air Oxidation Behavior of Sanicro-25 with Different Surface Finishes","authors":"Ch. Jagadeeswara Rao, M. Aishwarya, Avinash Kumar, P. Thilagavathy, S. Ningshen","doi":"10.1007/s11665-024-10042-3","DOIUrl":"10.1007/s11665-024-10042-3","url":null,"abstract":"<div><p>Sanicro-25 is a high-temperature material used as the structural material for steam superheaters and reheaters in advanced ultra-supercritical power plants. The air oxidation behavior of Sanicro-25 with various surface roughnesses is being assessed at 650 °C for about 1000 h. Different surface-roughened samples were studied, namely polishing the sample up to diamond finish, grinding up to (80-grit finish and 600-grit finish) and grit blasted. The diamond finish sample showed more weight gain than others, and higher weight gain was observed in the initial oxidation stage. Attributed to different surface preparations leads to defects at different levels, which further alters the diffusion of various elements. The diamond finish sample showed the presence of Cr-rich oxides, and other samples showed the presence of Fe-rich oxides. Smooth surfaces promoted the formation of thick protective oxide scales.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 24","pages":"13882 - 13896"},"PeriodicalIF":2.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10042-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Catanzaro, V. Scardaci, M. Scuderi, M. Condorelli, L. D’Urso, G. Compagnini
{"title":"Low-Temperature Sintering of Colloidal Gold Nanoparticles by Salt Addition","authors":"L. Catanzaro, V. Scardaci, M. Scuderi, M. Condorelli, L. D’Urso, G. Compagnini","doi":"10.1007/s11665-024-10265-4","DOIUrl":"10.1007/s11665-024-10265-4","url":null,"abstract":"<div><p>Gold nanoparticles synthetized by pulsed laser ablation in liquid with a mean diameter of 4 nm were joined together by adding potassium bromide solution at various concentrations. By increasing the salt concentration, there is a significant increase of the particle size up to a mean diameter of 18 nm. We have studied the nanoparticle merging by using atomic force and electron microscopy characterizations, also demonstrating that it is possible to deposit sintered nanoparticles on silanized substrates in a fast, simple, cost-effective, energy-saving method with relevance in industrial manufacturing.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 6","pages":"4540 - 4545"},"PeriodicalIF":2.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10265-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashok Kumar Palaniappan, Ravi Kumar Krishnan, Pradeep Vasanaperumal, Karthikeyan Rajendiran
{"title":"Analysis of the Mechanical Characteristics and Properties of a Carbon Fiber–Nylon Composite Influence of the Factors of the Fused Deposition Modeling","authors":"Ashok Kumar Palaniappan, Ravi Kumar Krishnan, Pradeep Vasanaperumal, Karthikeyan Rajendiran","doi":"10.1007/s11665-024-10150-0","DOIUrl":"10.1007/s11665-024-10150-0","url":null,"abstract":"<div><p>Experiments using carbon fiber reinforcing nylon composite produced by fused deposition modeling were conducted to determine mechanical parameters such as impact strength, tensile strength, and flexural strength. Four parameters—layer thickness, printing speed, raster angle, infill density, and twenty-seven runs—were used in the Box–Behnken technique of experimental design. Carbon fiber–nylon composite materials have flexural strengths that range from 20.12 to 25.89 N/mm<sup>2</sup>, tensile strengths that range from 22.75 to 34.35 N/mm<sup>2</sup>, and impact strengths that range from 0.37 to 0.72 kJ/m<sup>2</sup>. Tensile strength was significantly affected by printing speed, while impact and flexural strength was mainly influenced by layer thickness and raster angle. A scanning electron microscope was used on the broken sample to investigate the failure mechanism. Cavities, hillocks, smearing, fracture, ridges, pores, clusters, particle pullout, delamination, deep hole, protrusion, void, crack, infill gap, and interface all have an impact on composite fracture mechanisms.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"12976 - 12989"},"PeriodicalIF":2.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the Effect of Poly-tetra-fluoro-ethylene on the Cavitation-Erosion and Corrosion Resistance of HVOF Sprayed TiC Coatings on Stainless Steel","authors":"Vikrant Singh, Vijay Kumar, Anuj Bansal, Anil Kumar Singla, Samandeep Kaur, Mohit Vishnoi","doi":"10.1007/s11665-024-10238-7","DOIUrl":"10.1007/s11665-024-10238-7","url":null,"abstract":"<div><p>This research investigates; ways to improve material resistance to cavitation erosion and corrosion by using surfaces coated with PTFE and TiC applied through HVOF spraying. Optimal conditions were identified by the application of response surface methodology, leading to a significant decrease in mass loss. In material-specific reactions, HVOF-sprayed TiC showed increased resistance to cavitation because of its inherent micro-hardness (1293 HV). The reactivity of samples sprayed with PTFE varied, suggesting a complicated interplay between the properties of PTFE and jet velocities. SEM images verified the effectiveness of the PTFE and TiC coatings sprayed by HVOF as shields against corrosive elements. Even after seven cycles in a cyclic corrosion test, PTFE demonstrated outstanding corrosion resistance and impermeability, while the TiC coating created a dense, stable oxide layer. Furthermore, the combination of laser texturing and TiC and PTFE coatings sprayed with HVOF caused surfaces to exhibit superhydrophobic behavior (water contact angle: WCA > 155°). Extensive mechanical analyses provided information on surface roughness, bond strength, porosity, and microhardness, which helped to explain TiC's resilient resistance to indentation and strong adhesion (71.2 MPa) to the substrate. These findings offer practical methods and coatings to increase material resistance in conditions where cavitation and corrosive environments are common.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"12990 - 13003"},"PeriodicalIF":2.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing the Surface Roughness and Corrosion Resistance of YSZ-Coated Grade V Titanium Alloy by RF Sputtering","authors":"C. Bala Manikandan, N. Selvakumar","doi":"10.1007/s11665-024-10158-6","DOIUrl":"10.1007/s11665-024-10158-6","url":null,"abstract":"<div><p>Yttria-stabilized zirconia (YSZ) is deposited onto Grade V titanium alloy via Radio Frequency (RF) magnetron sputtering, with deposition times of 0.5 and 1 hour (h), respectively, to get thicknesses of about 150 and 250 nm. Using atomic force microscopy, morphology of the coated and the uncoated surfaces was determined. Electrochemical corrosion studies were carried out on the samples, and then Tafel, Impedance and Nyquist curves were plotted. Titanium alloy coated with YSZ for 1 h possess better surface roughness and corrosion resistance, followed by the YSZ coating for 0.5 h, when compared with the uncoated titanium alloy. Improvement in corrosion resistance of YSZ coated titanium alloy enables its usage in aircraft applications.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 3","pages":"2380 - 2389"},"PeriodicalIF":2.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy","authors":"Mustafa Safa Yilmaz","doi":"10.1007/s11665-024-10166-6","DOIUrl":"10.1007/s11665-024-10166-6","url":null,"abstract":"<div><p>AA 7020 alloy, widely used in the aviation and automobile industries with its specific strength, has become a material in demand in recent years by different sectors. Heat treatment to T6 temper increases the mechanical strength by precipitating hardening (ageing). Overaging to T73 temper improves the corrosion behavior of the alloy. A RRA (retrogression and re-ageing) heat treatment is a good alternative as it improves the corrosion behaviour compared to T6 temper and provides better mechanical values than precipitates from a material in T6 temper are redissolved by a short-term heat treatment between 160 and 280 °C (retrogression) which is then followed by a re-ageing under T6 heat treatment condition.</p><p>In this study, the AA7020 alloy was retrogressed for 1, 5, 15, 30, and 45 minutes at 180, 200, and 240 °C. Before, it was re-ageing at 120 °C for 24 hours. The hardness, conductivity, and corrosion behaviour of the heat-treated samples were determined, and the microstructure was evaluated by light microscopy, scanning electron microscope (SEM), and Energy-dispersive x-ray spectroscopy (EDX) methods.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 20","pages":"11231 - 11239"},"PeriodicalIF":2.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content","authors":"Chandan Kumar, Indrani Sen, Siddhartha Roy","doi":"10.1007/s11665-024-10106-4","DOIUrl":"https://doi.org/10.1007/s11665-024-10106-4","url":null,"abstract":"<p>This study aims to examine the dry reciprocating wear behavior of stir–squeeze cast AA6061-B<sub>4</sub>C composites under the synergistic effect of ex situ B<sub>4</sub>C particles and in situ formed Al-Ti intermetallic phases due to the use of K<sub>2</sub>TiF<sub>6</sub> salt as flux and Mg<sub>2</sub>Si precipitates formed after T6 heat treatment process. The K<sub>2</sub>TiF<sub>6</sub> flux content in the composites varied between 40 and 100% of a constant B<sub>4</sub>C content (6 wt.%). The heat treatment consisted of solutionizing at 540 °C for 8 h, followed by water quenching and then artificially aging at 180 °C for 4 h. While at any applied load, the wear rate decreased with increasing ex situ B<sub>4</sub>C particle retention, at applied loads more than 20 N, the wear performance deteriorated due to increased fracture and dislodgement of B<sub>4</sub>C particles. In situ Al-Ti intermetallics were more effective in lowering the wear rate at high applied loads. A mechanically mixed layer (MML) consisting of self-lubricating boron oxide and boric acid was formed in composites with high B<sub>4</sub>C particle retention, lowering the friction coefficient up to 20 N applied load. However, the friction coefficient increased at a higher applied load of 30 N due to increased peeling off the MML and three-body wear.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"187 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142253633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}