Investigating Optimum Hot Working Window of 2205 Duplex Stainless Steel Using Modified Dynamic Material Modeling

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Elvis M. Gonya, Mamookho E. Makhatha, Charles W. Siyasiya, Ndumiso M. Silubane, Ngeleshi M. Kibambe
{"title":"Investigating Optimum Hot Working Window of 2205 Duplex Stainless Steel Using Modified Dynamic Material Modeling","authors":"Elvis M. Gonya,&nbsp;Mamookho E. Makhatha,&nbsp;Charles W. Siyasiya,&nbsp;Ndumiso M. Silubane,&nbsp;Ngeleshi M. Kibambe","doi":"10.1007/s11665-024-10099-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses a modified dynamic material modeling (MDMM) suggested by Murty and Rao to develop processing maps (PM) of 2205 duplex stainless steels (DSS). Gleeble 1500D, a thermo-mechanical simulator was used to conduct single hit compression tests at a temperature between 850 and 1050 °C and strain rates of 0.001-5 s<sup>−1</sup>. Additionally hot compression tests at a strain rate of 15 s<sup>−1</sup> and same temperature range were also conducted on a Bahr 805 dilatometer. As per general procedure acquired stress-strain data were corrected for friction and adiabatic heating, before constructing PMs at true strains of 0.1, 0.3, 0.5 and 0.8. Microstructures to validate the PM were prepared from safe domains and instability regimes belonging to PM of 0.8 true strain. Results showed that hot processing at intermediate to high strain rates and temperature leads to formation of flow instabilities such as mechanical twins and adiabatic shear bands. Safe domain located within the temperature range of (850-925) °C, strain rates of (2.6-15) s<sup>−1</sup> and peak η = 35% gave an inhomogeneous microstructure with presumably non-uniform mechanical properties. This region was considered ideal for hot processing of 2205 DSS provided that deformation conditions are carefully controlled to optimise DRX. Low Z conditions also provided an optimum hot working for hot processing.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 24","pages":"13897 - 13915"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10099-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10099-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper uses a modified dynamic material modeling (MDMM) suggested by Murty and Rao to develop processing maps (PM) of 2205 duplex stainless steels (DSS). Gleeble 1500D, a thermo-mechanical simulator was used to conduct single hit compression tests at a temperature between 850 and 1050 °C and strain rates of 0.001-5 s−1. Additionally hot compression tests at a strain rate of 15 s−1 and same temperature range were also conducted on a Bahr 805 dilatometer. As per general procedure acquired stress-strain data were corrected for friction and adiabatic heating, before constructing PMs at true strains of 0.1, 0.3, 0.5 and 0.8. Microstructures to validate the PM were prepared from safe domains and instability regimes belonging to PM of 0.8 true strain. Results showed that hot processing at intermediate to high strain rates and temperature leads to formation of flow instabilities such as mechanical twins and adiabatic shear bands. Safe domain located within the temperature range of (850-925) °C, strain rates of (2.6-15) s−1 and peak η = 35% gave an inhomogeneous microstructure with presumably non-uniform mechanical properties. This region was considered ideal for hot processing of 2205 DSS provided that deformation conditions are carefully controlled to optimise DRX. Low Z conditions also provided an optimum hot working for hot processing.

本文采用 Murty 和 Rao 提出的改良动态材料建模(MDMM)来绘制 2205 双相不锈钢(DSS)的加工图(PM)。使用热机械模拟器 Gleeble 1500D 在 850 至 1050 °C 温度和 0.001-5 s-1 应变速率下进行单击压缩试验。此外,还在 Bahr 805 膨涨仪上以 15 秒-1 的应变速率和相同的温度范围进行了热压缩试验。按照一般程序,在构建真实应变为 0.1、0.3、0.5 和 0.8 的 PM 之前,对获得的应力应变数据进行了摩擦和绝热加热校正。验证 PM 的微观结构是从安全域和属于 0.8 真实应变 PM 的不稳定状态制备的。结果表明,在中高应变率和温度下进行热加工会形成流动不稳定性,如机械孪晶和绝热剪切带。温度范围为 (850-925) ℃、应变率为 (2.6-15) s-1 和峰值 η = 35% 的安全域产生了一种不均匀的微观结构,其机械性能可能不均匀。该区域被认为是 2205 DSS 热加工的理想区域,前提是必须仔细控制变形条件以优化 DRX。低 Z 条件也为热加工提供了最佳热加工条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信