Fracture Behavior of Hardfacing Alloy Coated Over Stainless Steel under Quasi-Static and Dynamic Loads

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Prince Joseph, M. Nani Babu, S. K. Albert
{"title":"Fracture Behavior of Hardfacing Alloy Coated Over Stainless Steel under Quasi-Static and Dynamic Loads","authors":"Prince Joseph,&nbsp;M. Nani Babu,&nbsp;S. K. Albert","doi":"10.1007/s11665-024-10389-7","DOIUrl":null,"url":null,"abstract":"<div><p>The fracture behavior of bi-material made of Ni-Cr-B-Si hardfacing alloy deposited over SS316LN substrate was evaluated under quasi-static and dynamic loads. The crack growth started from notch made on the deposit side and progress toward the substrate deposit interface under both loading conditions was monitored. The displacement rate in quasi-static loading and the loading rate for dynamic loading varied and crack propagation was studied. It was observed that the crack was deflected at the interface and not penetrated to the substrate, irrespective of loading conditions. The reason for crack deflection at the interface was analyzed using the energy-based method. It is shown that the ratio of fracture toughness of the interface to that of the substrate (0.044) is lower than the ratio of energy release rate for the deflecting crack to that of the penetrating crack (0.235). Thus, this material combination satisfies the condition for crack deflection rather than penetration. The fracture toughness of the interface was estimated as ~ 68 MPa m<sup>1/2</sup> and it falls between that of hardfacing alloy and SS316LN base metal. Optical and SEM examinations were conducted to corroborate the crack path deviations during crack growth. Results suggest that isolated cracks might be present on hardfaced coatings on critical components for which such cracks are usually not permitted. It may be allowed in preference to repair of these cracks, which is difficult and significantly increases the risk of additional cracks forming on the deposits because of the high susceptibility of the hardfacing alloy to cracking.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"13019 - 13029"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10389-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10389-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fracture behavior of bi-material made of Ni-Cr-B-Si hardfacing alloy deposited over SS316LN substrate was evaluated under quasi-static and dynamic loads. The crack growth started from notch made on the deposit side and progress toward the substrate deposit interface under both loading conditions was monitored. The displacement rate in quasi-static loading and the loading rate for dynamic loading varied and crack propagation was studied. It was observed that the crack was deflected at the interface and not penetrated to the substrate, irrespective of loading conditions. The reason for crack deflection at the interface was analyzed using the energy-based method. It is shown that the ratio of fracture toughness of the interface to that of the substrate (0.044) is lower than the ratio of energy release rate for the deflecting crack to that of the penetrating crack (0.235). Thus, this material combination satisfies the condition for crack deflection rather than penetration. The fracture toughness of the interface was estimated as ~ 68 MPa m1/2 and it falls between that of hardfacing alloy and SS316LN base metal. Optical and SEM examinations were conducted to corroborate the crack path deviations during crack growth. Results suggest that isolated cracks might be present on hardfaced coatings on critical components for which such cracks are usually not permitted. It may be allowed in preference to repair of these cracks, which is difficult and significantly increases the risk of additional cracks forming on the deposits because of the high susceptibility of the hardfacing alloy to cracking.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信