Journal of Materials Engineering and Performance最新文献

筛选
英文 中文
Chemical-Free Method for Recovery of Lead from Spent Lead Paste by Reductive Sulfation Technique from By-product Utilization 利用副产品还原硫化技术从废铅膏中回收铅的免化学方法
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-29 DOI: 10.1007/s11665-024-10479-6
H. M. Ahsen Ilyas, Qingyun Xiong, Jiarong Hu, Botai Li, Deyi Li, Chengzhong Wang, Jinping Xiong, Mohammad Tabish, Khalid M. Alotaibi, Ghulam Yasin
{"title":"Chemical-Free Method for Recovery of Lead from Spent Lead Paste by Reductive Sulfation Technique from By-product Utilization","authors":"H. M. Ahsen Ilyas,&nbsp;Qingyun Xiong,&nbsp;Jiarong Hu,&nbsp;Botai Li,&nbsp;Deyi Li,&nbsp;Chengzhong Wang,&nbsp;Jinping Xiong,&nbsp;Mohammad Tabish,&nbsp;Khalid M. Alotaibi,&nbsp;Ghulam Yasin","doi":"10.1007/s11665-024-10479-6","DOIUrl":"10.1007/s11665-024-10479-6","url":null,"abstract":"<div><p>Poisonous wastes, including lead slag, mattes, acidic sludge, particulates, and emissions of airborne gases, are primary industrial wastes related to the lead-acid battery industry. Herein, the phase conversion technique for PbO<sub>2</sub>/PbSO<sub>4</sub> components and impurity contents of spent lead paste were studied. The reductive sulfur fixation technique was employed for the extraction of pure lead product from spent lead paste and immobilizing sulfur, which was relatively improved as compared to the release of sulfur oxides and lead particulates when traditional recycling techniques were used. Furthermore, a bench-scale experiment was carried out for the revival of chemical reagents and removal of impurities from the spent lead paste to understand the reliability and efficiency of this novel method from the perspective of a chemical-free process. The results reveal that the products were achieved in three distinct layers, i.e., impurities-free P-paste, sulfated residue (PbSO<sub>4</sub>), desulfurized residue (PbCO<sub>3</sub>) and the final product (α-PbO). In this work, the recovery efficiency of spent lead-acid batteries is higher than 99.9%. Moreover, the metal impurities such as Fe, Sb, Zn, Cu, and Mg were efficiently removed, and 99.89/99.999/99.94% of the reduction/sulfation/carbonization efficiency were achieved. This chemical-free research paves novel and appropriate extraction of lead for engineering and industrial sectors.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 5","pages":"3991 - 4003"},"PeriodicalIF":2.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Rotational Speed on Microstructure and Mechanical Properties of Al/Ti Dissimilar Joint Produced by Refill Friction Stir Spot Welding
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-25 DOI: 10.1007/s11665-023-08545-6
Xinchen Nan, Hongyun Zhao, Bin-Bin Jia, Chengyue Ma, Guangda Sun, Li Zhou, Rui Wang, Xiaoguo Song
{"title":"The Effect of Rotational Speed on Microstructure and Mechanical Properties of Al/Ti Dissimilar Joint Produced by Refill Friction Stir Spot Welding","authors":"Xinchen Nan,&nbsp;Hongyun Zhao,&nbsp;Bin-Bin Jia,&nbsp;Chengyue Ma,&nbsp;Guangda Sun,&nbsp;Li Zhou,&nbsp;Rui Wang,&nbsp;Xiaoguo Song","doi":"10.1007/s11665-023-08545-6","DOIUrl":"10.1007/s11665-023-08545-6","url":null,"abstract":"<div><p>The microstructure and mechanical properties of Al/Ti dissimilar refill friction stir spot welding joints at different rotational speeds were studied. The grain size of each zone of the joint increases with increasing rotational speed. An interfacial layer with thickness less than 50 nm was formed at the interface. Combined with the numerical simulation results, the multiple effects of thermal and mechanical action on microstructure are explained. The microhardness of the aluminum alloy joint presents a ‘W’ shape distribution. The tensile strength increases firstly and then decreases with the increase in rotational speed. The joint strength of 6353 N is the highest at 1300 rpm. The sleeve stir zone fracture occurs at the interface, and the fracture mode is brittle fracture. The pin stir zone fracture occurs at the aluminum alloy, and the fracture mode is ductile mixed fracture.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 3","pages":"1812 - 1824"},"PeriodicalIF":2.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Defects and Shot Peening on Fatigue Properties of Additively Manufactured CoCrFeNiTiMo-Based High-Entropy Alloys 缺陷和喷丸强化对添加制造的钴铬镍钛钼基高熵合金疲劳性能的影响
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-19 DOI: 10.1007/s11665-024-10371-3
Miu Hayashi, Naoki Kurita, Tadatoshi Watanabe, Kenichi Yamamoto, Yuki Ogawa, Hiroyuki Akebono, Atsushi Sugeta
{"title":"Effects of Defects and Shot Peening on Fatigue Properties of Additively Manufactured CoCrFeNiTiMo-Based High-Entropy Alloys","authors":"Miu Hayashi,&nbsp;Naoki Kurita,&nbsp;Tadatoshi Watanabe,&nbsp;Kenichi Yamamoto,&nbsp;Yuki Ogawa,&nbsp;Hiroyuki Akebono,&nbsp;Atsushi Sugeta","doi":"10.1007/s11665-024-10371-3","DOIUrl":"10.1007/s11665-024-10371-3","url":null,"abstract":"<div><p>Recently, the automotive industry has increasingly focused on additive manufacturing as a new technology for reducing the weights of automobiles. In this study, fatigue tests were conducted on additively manufactured high-entropy alloys with different defect characteristics to clarify the relationships between their defect characteristics and fatigue strengths and to elucidate their fatigue fracture mechanisms. In addition, the effect of shot peening as an effective fatigue strength improvement method for an additively manufactured component was investigated. As a result, when defects formed by additive manufacturing were smaller than crystal grains, the numbers and sizes of defects affect fatigue crack growth behavior and barely affect fatigue life. Shot peening reduces the crack growth rate and is effective in extending the fatigue life. However, improvement in the fatigue limit is not achieved because the crack initiation site is a facet. From the above results, for defects smaller than the grain size, shot peening is a more effective method for improving fatigue life than reducing the numbers and sizes of defects.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 24","pages":"13916 - 13923"},"PeriodicalIF":2.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10371-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating Optimum Hot Working Window of 2205 Duplex Stainless Steel Using Modified Dynamic Material Modeling 基于改进动态材料模型的2205双相不锈钢最佳热加工窗口研究
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-19 DOI: 10.1007/s11665-024-10099-0
Elvis M. Gonya, Mamookho E. Makhatha, Charles W. Siyasiya, Ndumiso M. Silubane, Ngeleshi M. Kibambe
{"title":"Investigating Optimum Hot Working Window of 2205 Duplex Stainless Steel Using Modified Dynamic Material Modeling","authors":"Elvis M. Gonya,&nbsp;Mamookho E. Makhatha,&nbsp;Charles W. Siyasiya,&nbsp;Ndumiso M. Silubane,&nbsp;Ngeleshi M. Kibambe","doi":"10.1007/s11665-024-10099-0","DOIUrl":"10.1007/s11665-024-10099-0","url":null,"abstract":"<div><p>This paper uses a modified dynamic material modeling (MDMM) suggested by Murty and Rao to develop processing maps (PM) of 2205 duplex stainless steels (DSS). Gleeble 1500D, a thermo-mechanical simulator was used to conduct single hit compression tests at a temperature between 850 and 1050 °C and strain rates of 0.001-5 s<sup>−1</sup>. Additionally hot compression tests at a strain rate of 15 s<sup>−1</sup> and same temperature range were also conducted on a Bahr 805 dilatometer. As per general procedure acquired stress-strain data were corrected for friction and adiabatic heating, before constructing PMs at true strains of 0.1, 0.3, 0.5 and 0.8. Microstructures to validate the PM were prepared from safe domains and instability regimes belonging to PM of 0.8 true strain. Results showed that hot processing at intermediate to high strain rates and temperature leads to formation of flow instabilities such as mechanical twins and adiabatic shear bands. Safe domain located within the temperature range of (850-925) °C, strain rates of (2.6-15) s<sup>−1</sup> and peak η = 35% gave an inhomogeneous microstructure with presumably non-uniform mechanical properties. This region was considered ideal for hot processing of 2205 DSS provided that deformation conditions are carefully controlled to optimise DRX. Low Z conditions also provided an optimum hot working for hot processing.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 24","pages":"13897 - 13915"},"PeriodicalIF":2.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10099-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Cold Metal Transfer-Wire Arc Additive Manufacturing Parameters for Enhanced Mechanical Properties and Microstructure of ER5356 Aluminum Alloy Using Artificial Neural Network and Response Surface Methodology
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-18 DOI: 10.1007/s11665-024-10403-y
Nagarajan Manikandan, Mathivanan Arumugam
{"title":"Optimizing Cold Metal Transfer-Wire Arc Additive Manufacturing Parameters for Enhanced Mechanical Properties and Microstructure of ER5356 Aluminum Alloy Using Artificial Neural Network and Response Surface Methodology","authors":"Nagarajan Manikandan,&nbsp;Mathivanan Arumugam","doi":"10.1007/s11665-024-10403-y","DOIUrl":"10.1007/s11665-024-10403-y","url":null,"abstract":"<p>With significant benefits in resource consumption and production efficiency, wire arc additive manufacturing (WAAM) has become a critical method in manufacturing metal components. The goal of this research is to maximize bead width (BW) and bead height (BH) by optimizing the welding parameters current, voltage, and traverse speed in the gas metal arc welding (GMAW) cold metal transfer (CMT) process utilizing response surface methodology (RSM) and artificial neural networks (ANNs). Initially, ANNs were employed to predict bead geometry, demonstrating high predictive accuracy with <i>R</i><sup>2</sup> values of 0.964 for BW and 0.9713 for BH. Employing Design Expert 13 software, predictive models were developed, revealing the relationships between these parameters and bead characteristics. Optimal parameters were identified as a current of 135 A, voltage of 16 V, and traverse speed of 40 cm/min, achieving a bead width of 5.8 mm and bead height of 3.65 mm. Microstructural analyses via x-ray diffraction (XRD) and scanning electron microscopy (SEM) highlighted significant variations, with distinct crystallographic orientations and micro-cracks observed across different sections of the Al5356 material. Electron backscatter diffraction (EBSD) further illustrated grain structure and orientation variations. Mechanical properties tests demonstrated that the bottom section exhibited the highest ultimate tensile stress (UTS) at 294.11 MPa and yield strength (YS) at 190.38 MPa. In contrast, the middle section had the highest hardness value at 74 HV. This research underscores the importance of optimizing WAAM parameters to enhance mechanical properties and microstructural integrity, providing valuable insights for future applications in additive manufacturing.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 6","pages":"4853 - 4872"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and Challenges in Interference-Fit Technology for Enhancing the Mechanical Performance of Joints
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-18 DOI: 10.1007/s11665-024-10418-5
Qiliang Zhang, Yangjie Zuo, Zongwei Hu, Yingshan Xu, Xiaopeng Liu
{"title":"Advances and Challenges in Interference-Fit Technology for Enhancing the Mechanical Performance of Joints","authors":"Qiliang Zhang,&nbsp;Yangjie Zuo,&nbsp;Zongwei Hu,&nbsp;Yingshan Xu,&nbsp;Xiaopeng Liu","doi":"10.1007/s11665-024-10418-5","DOIUrl":"10.1007/s11665-024-10418-5","url":null,"abstract":"<div><p>In industries such as aerospace, defense, and automotive, mechanical joining methods are widely adopted. However, the stress concentration effects have diminished the fatigue performance of these connections. Interference fit has emerged as a method proven to effectively enhance the fatigue resistance of such joints, yet traditional theoretical frameworks have not fully elucidated the mechanisms behind its fatigue strengthening, hindering the advancement and application of this technology. This article meticulously assesses and synthesizes key research findings and applications of interference fit from the past 15 years, delving into its classifications, installation processes, and their impacts on the mechanical performance of joints, followed by an in-depth analysis of its fatigue strengthening mechanisms and the limitations of current theories. Furthermore, the article explores hybrid reinforcement techniques that combine interference fit with other methods, offering an advanced strategy for joint reinforcement. Finally, several key challenges are identified for further exploration. The aim of this review is to lay the groundwork for future research, deepen the understanding of interference-fit technology, and promote the design of more robust and reliable mechanical joints.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 5","pages":"3585 - 3607"},"PeriodicalIF":2.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanojoining of TiAl with Ni-Al Reactive Multilayer Nanofoils: A Molecular Dynamics Study
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-14 DOI: 10.1007/s11665-024-10312-0
Olivier Politano, Florence Baras
{"title":"Nanojoining of TiAl with Ni-Al Reactive Multilayer Nanofoils: A Molecular Dynamics Study","authors":"Olivier Politano,&nbsp;Florence Baras","doi":"10.1007/s11665-024-10312-0","DOIUrl":"10.1007/s11665-024-10312-0","url":null,"abstract":"<div><p>The Ni-Al reactive multilayer nanofoils (RMNFs) are good candidates for joining applications because they can deliver a significant amount of energy locally and in a very short time after the initiation of the reaction. We investigated, at the nanoscale, how a joining process unfolds when this type of nanofoil is used to bond TiAl intermetallic, employing molecular dynamics simulations. The self-sustained exothermic nature of the reaction was demonstrated, and the various elemental mechanisms were elucidated. The present study offers a detailed analysis of the microstructure of the bonded region. The joining between the nanofoil and the substrate relied on the formation of Ti-Al-Ni intermetallic compounds.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 6","pages":"4555 - 4563"},"PeriodicalIF":2.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fracture Behavior of Hardfacing Alloy Coated Over Stainless Steel under Quasi-Static and Dynamic Loads 准静态和动态载荷下不锈钢表面堆焊合金的断裂行为
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-12 DOI: 10.1007/s11665-024-10389-7
Prince Joseph, M. Nani Babu, S. K. Albert
{"title":"Fracture Behavior of Hardfacing Alloy Coated Over Stainless Steel under Quasi-Static and Dynamic Loads","authors":"Prince Joseph,&nbsp;M. Nani Babu,&nbsp;S. K. Albert","doi":"10.1007/s11665-024-10389-7","DOIUrl":"10.1007/s11665-024-10389-7","url":null,"abstract":"<div><p>The fracture behavior of bi-material made of Ni-Cr-B-Si hardfacing alloy deposited over SS316LN substrate was evaluated under quasi-static and dynamic loads. The crack growth started from notch made on the deposit side and progress toward the substrate deposit interface under both loading conditions was monitored. The displacement rate in quasi-static loading and the loading rate for dynamic loading varied and crack propagation was studied. It was observed that the crack was deflected at the interface and not penetrated to the substrate, irrespective of loading conditions. The reason for crack deflection at the interface was analyzed using the energy-based method. It is shown that the ratio of fracture toughness of the interface to that of the substrate (0.044) is lower than the ratio of energy release rate for the deflecting crack to that of the penetrating crack (0.235). Thus, this material combination satisfies the condition for crack deflection rather than penetration. The fracture toughness of the interface was estimated as ~ 68 MPa m<sup>1/2</sup> and it falls between that of hardfacing alloy and SS316LN base metal. Optical and SEM examinations were conducted to corroborate the crack path deviations during crack growth. Results suggest that isolated cracks might be present on hardfaced coatings on critical components for which such cracks are usually not permitted. It may be allowed in preference to repair of these cracks, which is difficult and significantly increases the risk of additional cracks forming on the deposits because of the high susceptibility of the hardfacing alloy to cracking.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"13019 - 13029"},"PeriodicalIF":2.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10389-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Mechanical and Slurry Erosive Behavior on Laser-Textured Stainless Steel (SS410) 评估激光纹理不锈钢(SS410)的机械和泥浆侵蚀行为
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-12 DOI: 10.1007/s11665-024-10351-7
Mohit Vishnoi, Qasim Murtaza, Paras Kumar
{"title":"Assessment of Mechanical and Slurry Erosive Behavior on Laser-Textured Stainless Steel (SS410)","authors":"Mohit Vishnoi,&nbsp;Qasim Murtaza,&nbsp;Paras Kumar","doi":"10.1007/s11665-024-10351-7","DOIUrl":"10.1007/s11665-024-10351-7","url":null,"abstract":"<div><p>In this paper, laser surface texturing (LST) has been used to create the circular and diamond shape texturing pattern on martensitic steel of grade SS410 to alter the various mechanical, surface, and tribological properties. The mechanical and surface characterizations have done on various shape-textured surfaces on SS410. Moreover, the slurry jet erosion test has performed on textured surfaces using a slurry erosion test rig. The hardness value of the various textured shape surface is higher than the others because mechanism of material removal for pattern is melting and evaporation, after applying an intense heat sudden cooling takes place. This might be altering the microstructure and enhances the hardness of the textured steel. The hardness value was the highest for circular-inward-textured case (HV0.3≈206) among all texturing. The tensile and flexural yield strength has marginally increased after texturing. The value of percentage elongation has marginally decreased after texturing. The modulus values for all the textured samples have enhanced as compared to untextured sample. Moreover, the modulus value of diamond-in textured samples are observed to be the highest i.e., ≈265GPa. The contact angles for all shapes of texturing patterns have greater values than untextured samples. All the textured surfaces show the hydrophobic and untextured surface as hydrophilic behavior. The outward textured surface has greater contact angle value (≈110°) as compared to others. The erosion resistance for the untextured samples have lesser among all textured samples, and the circular-in pattern has the highest erosion resistance. Because the erosion resistance is primarily depend on the hardness of the material, the plowing, microcutting lips, crater, and carbide pull-out type of wear mechanism has been identified using a scanning electron microscope.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 24","pages":"13924 - 13940"},"PeriodicalIF":2.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ultrasonic Shot Peening on Surface Mechanical and Wear Behavior of Aluminum 7075-T651 Alloy 超声喷丸强化对7075-T651铝合金表面力学和磨损性能的影响
IF 2.2 4区 材料科学
Journal of Materials Engineering and Performance Pub Date : 2024-11-11 DOI: 10.1007/s11665-024-10352-6
Sudhir Behera, Ibrahim A. Alnaser, Gorti Janardhan, Pushpendra Kumar Dwivedi, Jayaprakash Murugesan, Anindya Basu, Asiful H. Seikh, Krishna Dutta
{"title":"Effect of Ultrasonic Shot Peening on Surface Mechanical and Wear Behavior of Aluminum 7075-T651 Alloy","authors":"Sudhir Behera,&nbsp;Ibrahim A. Alnaser,&nbsp;Gorti Janardhan,&nbsp;Pushpendra Kumar Dwivedi,&nbsp;Jayaprakash Murugesan,&nbsp;Anindya Basu,&nbsp;Asiful H. Seikh,&nbsp;Krishna Dutta","doi":"10.1007/s11665-024-10352-6","DOIUrl":"10.1007/s11665-024-10352-6","url":null,"abstract":"<div><p>Aluminum alloys have gained widespread attention in various engineering sectors such as aerospace, automobile, and construction industries owing to their attractive properties. On the other hand, the tribological properties of aluminum alloys are of serious concern due to their limitation in terms of hardness. The objective of the current study was to enhance the surface mechanical properties including microhardness, compressive residual stress (CRS), and wear resistance of 7075-T651 aluminum alloy subjected to ultrasonic shot peening (USP). The samples of aluminum alloy were first treated with USP for various durations followed by different types of in-depth characterization. X-ray diffraction analysis was used to examine the bulk texture development after peening. The wear studies were carried out on a ball-on-plate wear testing machine under various applied loads. The results indicated an increase in hardness, surface roughness, and CRS of the samples with increasing USP time. Additionally, a marginal difference in the surface roughness of peened samples was observed for selected peening times. The wear depth and width of peened wear tracks were found to be less than those of un-peened ones. The surface tribological properties of the worn-out samples were studied using scanning electron microscopy (SEM). The elemental analysis was carried out using electron-dispersive spectroscopy (EDS).</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 23","pages":"13004 - 13018"},"PeriodicalIF":2.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信