高钛钢研究进展综述

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Longxiao Huang, Penghui Yang, Hanguang Fu
{"title":"高钛钢研究进展综述","authors":"Longxiao Huang,&nbsp;Penghui Yang,&nbsp;Hanguang Fu","doi":"10.1007/s11665-024-10366-0","DOIUrl":null,"url":null,"abstract":"<div><p>Substantial in situ TiC precipitation in high-titanium steel can significantly enhance its wear resistance. This improvement is attributed to the high hardness, low density, large precipitation volume, and stable chemical properties of TiC, which has attracted increasing attention. This paper firstly summarizes the recent research progress on the solute redistribution model, kinetics, and thermodynamic calculations of TiC precipitation, as well as the relevant experimental research on high-titanium steel prepared by the melting cast method. It provides a detailed analysis of the microstructure, mechanical properties including hardness, tensile strength, yield strength, elongation and impact toughness, and other properties of high-titanium steel, highlighting the influencing factors. Additionally, the wear resistance and wear mechanisms of high-titanium steel with different Ti content under different wear conditions are compared, including two-body wear, three-body wear, lubrication wear, and impact wear. At last, the future potential research directions for high-titanium steel are proposed, aiming to provide support for further development and application.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 3","pages":"1795 - 1811"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Titanium Steel: A Comprehensive Review of Research Progress\",\"authors\":\"Longxiao Huang,&nbsp;Penghui Yang,&nbsp;Hanguang Fu\",\"doi\":\"10.1007/s11665-024-10366-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Substantial in situ TiC precipitation in high-titanium steel can significantly enhance its wear resistance. This improvement is attributed to the high hardness, low density, large precipitation volume, and stable chemical properties of TiC, which has attracted increasing attention. This paper firstly summarizes the recent research progress on the solute redistribution model, kinetics, and thermodynamic calculations of TiC precipitation, as well as the relevant experimental research on high-titanium steel prepared by the melting cast method. It provides a detailed analysis of the microstructure, mechanical properties including hardness, tensile strength, yield strength, elongation and impact toughness, and other properties of high-titanium steel, highlighting the influencing factors. Additionally, the wear resistance and wear mechanisms of high-titanium steel with different Ti content under different wear conditions are compared, including two-body wear, three-body wear, lubrication wear, and impact wear. At last, the future potential research directions for high-titanium steel are proposed, aiming to provide support for further development and application.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"34 3\",\"pages\":\"1795 - 1811\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-10366-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-10366-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高钛钢中大量原位TiC析出可显著提高其耐磨性。由于TiC的硬度高、密度低、析出体积大、化学性质稳定等特点,其性能得到了越来越多的关注。本文首先综述了近年来在溶质重分布模型、TiC析出动力学和热力学计算以及熔融铸造法制备高钛钢的相关实验研究等方面的研究进展。详细分析了高钛钢的显微组织、硬度、抗拉强度、屈服强度、伸长率和冲击韧性等力学性能,重点分析了影响因素。对比了不同Ti含量的高钛钢在不同磨损条件下的耐磨性和磨损机理,包括二体磨损、三体磨损、润滑磨损和冲击磨损。最后,提出了高钛钢未来可能的研究方向,为其进一步开发和应用提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Titanium Steel: A Comprehensive Review of Research Progress

High-Titanium Steel: A Comprehensive Review of Research Progress

Substantial in situ TiC precipitation in high-titanium steel can significantly enhance its wear resistance. This improvement is attributed to the high hardness, low density, large precipitation volume, and stable chemical properties of TiC, which has attracted increasing attention. This paper firstly summarizes the recent research progress on the solute redistribution model, kinetics, and thermodynamic calculations of TiC precipitation, as well as the relevant experimental research on high-titanium steel prepared by the melting cast method. It provides a detailed analysis of the microstructure, mechanical properties including hardness, tensile strength, yield strength, elongation and impact toughness, and other properties of high-titanium steel, highlighting the influencing factors. Additionally, the wear resistance and wear mechanisms of high-titanium steel with different Ti content under different wear conditions are compared, including two-body wear, three-body wear, lubrication wear, and impact wear. At last, the future potential research directions for high-titanium steel are proposed, aiming to provide support for further development and application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信