Journal of Leather Science and Engineering最新文献

筛选
英文 中文
A novel approach for preparing aldehyde-free melamine resin and investigation of its retanning performance 制备无醛三聚氰胺树脂的新方法及其复鞣性能研究
Journal of Leather Science and Engineering Pub Date : 2024-05-01 DOI: 10.1186/s42825-024-00155-9
Chi Zhang, Ji-bo Zhou, Nan Sun, Xue-pin Liao, Bi Shi
{"title":"A novel approach for preparing aldehyde-free melamine resin and investigation of its retanning performance","authors":"Chi Zhang,&nbsp;Ji-bo Zhou,&nbsp;Nan Sun,&nbsp;Xue-pin Liao,&nbsp;Bi Shi","doi":"10.1186/s42825-024-00155-9","DOIUrl":"10.1186/s42825-024-00155-9","url":null,"abstract":"<div><p>Melamine resin (MR), traditionally synthesized using melamine and formaldehyde, is widely used in the leather industry. However, the emission of free formaldehyde poses a significant challenge for conventional MR. To address the issues of aldehyde in MR, extensive research has been conducted. This paper introduces a novel aldehyde-free MR (LTSL) retanning agent synthesized using cyanuric chloride, l-lysine, and sodium sulfanilate. The chemical structure of LTSL was analyzed via Fourier transform infrared spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. The presence of amino, carboxyl, and sulfonic acid groups in LTSL enhanced its storability and imparted LTSL with an amphoteric character. The isoelectric point of LTSL was optimized to reach 4.37, and LTSL exhibited an appropriate size distribution with an average particle size of 254.17 nm and achieved high absorption rates of 87.77% and 95.84% for retanning and fatliquoring agents, respectively. Consequently, the thickness rate of LTSL reached up to 37%, with no detectable formaldehyde. Notably, LTSL also demonstrated excellent physical and mechanical properties, primarily attributed to the coordination and electrostatic interactions between the chrome-tanned collagen fiber and amino/carboxyl groups in LTSL. This research presents an innovative approach for developing an aldehyde-free MR retanning agent, significantly contributing to the sustainable development of leather manufacturing.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00155-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomineralized synthesis of luminescent protease-(NH4)2Y3F11•H2O hybrid nanospheres and their applications as a stable and reusable enzyme reactor 发光蛋白酶(NH4)2Y3F11-H2O 混合纳米球的生物矿化合成及其作为稳定、可重复使用的酶反应器的应用
Journal of Leather Science and Engineering Pub Date : 2024-04-03 DOI: 10.1186/s42825-024-00157-7
Wenyu Wei, Manman He, Jianrui Ma, Huixia He, Peng Liu, Jianxi Xiao
{"title":"Biomineralized synthesis of luminescent protease-(NH4)2Y3F11•H2O hybrid nanospheres and their applications as a stable and reusable enzyme reactor","authors":"Wenyu Wei,&nbsp;Manman He,&nbsp;Jianrui Ma,&nbsp;Huixia He,&nbsp;Peng Liu,&nbsp;Jianxi Xiao","doi":"10.1186/s42825-024-00157-7","DOIUrl":"10.1186/s42825-024-00157-7","url":null,"abstract":"<div><p>Proteases, such as trypsin, are essential for extracting collagen in various industrial applications. The potential applications of rare earth nanomaterials, specifically yttrium nanoparticles, have attracted significant interest across various fields due to their distinctive characteristics, including high dielectric constant and thermal stability. Biomineralization has emerged as a promising approach to synthesize protein-inorganic nanomaterials with hierarchical structures and desired functions. In the present investigation, a novel protease-templated biomineralization strategy was developed for synthesizing protease-(NH<sub>4</sub>)<sub>2</sub>Y<sub>3</sub>F<sub>11</sub>•H<sub>2</sub>O hybrid nanomaterials using a one-pot method under very mild conditions. For modifying the morphologies of (NH<sub>4</sub>)<sub>2</sub>Y<sub>3</sub>F<sub>11</sub>•H<sub>2</sub>O throughout biomineralization, protease has been demonstrated to be a highly promising biotemplate. Protease was utilized as a template for morphological control in the biomineralization procedure, which resulted in a gradual transformation of the initially formed (NH<sub>4</sub>)<sub>2</sub>Y<sub>3</sub>F<sub>11</sub>•H<sub>2</sub>O octahedral structures into uniform nanospheres. The applicability of this approach was supported by successfully utilizing various proteases to synthesize protease-(NH<sub>4</sub>)<sub>2</sub>Y<sub>3</sub>F<sub>11</sub>•H<sub>2</sub>O hybrid nanospheres. In addition to a strong and desirable luminescent signal, these hybrid nanospheres demonstrated extensive recycling because of their high enzymatic activity, stability and durability. The protease-mediated biomineralization approach offers an easy and robust approach to develop innovative protease-inorganic composites. Its moderate reaction conditions and simple operation render it a viable tool for developing stable and reusable enzyme reactors in various industrial applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00157-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manufacturing of isocyanate-based oligomeric dyes with high coloring capabilities: synthesis and application in the dyeing of organic chrome-free leather 制造具有高着色能力的异氰酸酯基低聚物染料:合成及在有机无铬皮革染色中的应用
Journal of Leather Science and Engineering Pub Date : 2024-04-02 DOI: 10.1186/s42825-024-00153-x
Wei Ding, Song Guo, Haiteng Liu, Xiaoyan Pang, Zhiwen Ding, Javier Remón
{"title":"Manufacturing of isocyanate-based oligomeric dyes with high coloring capabilities: synthesis and application in the dyeing of organic chrome-free leather","authors":"Wei Ding,&nbsp;Song Guo,&nbsp;Haiteng Liu,&nbsp;Xiaoyan Pang,&nbsp;Zhiwen Ding,&nbsp;Javier Remón","doi":"10.1186/s42825-024-00153-x","DOIUrl":"10.1186/s42825-024-00153-x","url":null,"abstract":"<div><p>Leather dyeing is a critical step in leather manufacturing, as it is responsible for providing leather products with an eye-catching visual aspect and adequate quality properties to meet customers' expectations. This step is becoming more and more challenging as the leather industry advances hand in hand with new environmentally friendly policies and regulations to achieve a safer and healthier planet by replacing the highly polluting Cr-based leather tanning technology with greener alternatives. As a result, achieving high-performance dyeing of organic chrome-free leather is one of the bottlenecks for the sustainable development of the leather industry. Herein, we propose a novel strategy to fabricate an isocyanate-based oligomeric dye (IBD) with high coloring capabilities (component content higher than 62.8%) based on toluene 2,4-diisocyanate and reactive red dye 180. This material has been tested for the dyeing of biomass-derived aldehyde (BDA)-tanned leather with excellent outcomes. The experimental results showed that the crust leather dyed with our novel IBD dyeing agent had higher color fastness and better fullness than the leather dyed with conventional anionic (CAD) or reactive red 180 (RRD-180) dyes. These excellent and promising results open new avenues in manufacturing high-performance organic Cr-free leather products and help to ensure the sustainable transition of the leather industry from Cr-based leather tanning to more sustainable alternatives, maintaining the final quality of the leather products.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00153-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradability of leather: a crucial indicator to evaluate sustainability of leather 皮革的生物降解性:评估皮革可持续性的关键指标
Journal of Leather Science and Engineering Pub Date : 2024-04-01 DOI: 10.1186/s42825-024-00151-z
Ya-nan Wang, Yuxin Zhang, Zhen Wang
{"title":"Biodegradability of leather: a crucial indicator to evaluate sustainability of leather","authors":"Ya-nan Wang,&nbsp;Yuxin Zhang,&nbsp;Zhen Wang","doi":"10.1186/s42825-024-00151-z","DOIUrl":"10.1186/s42825-024-00151-z","url":null,"abstract":"<div><p>Biodegradability is a crucial indicator to evaluate the sustainability of leather. Herein, a rapid method for biodegradation test in an aqueous medium by measuring biochemical oxygen demand was used to determine the biodegradability of leather from different tanning methods, tanning conditions and process stages. In addition, the difference in biodegradability between leather and leather-like synthetic materials were investigated. Chrome-free tanned leather showed higher degree of biodegradation and faster biodegradation rate than chrome tanned leather. Among them, leathers tanned with biomass-based tanning agents were much easier to biodegrade because the crosslinking network of tanned leather constructed with biomass was more susceptible to microbial attack. The enhancement of tanning effects through changing tanning methods and conditions (such as tanning agent dosage, pH and temperature) resulted in the decline of leather biodegradability. Future development of novel chrome-free tanning technologies should balance between these two aspects. The biodegradability of leather from tanning to post-tanning to finishing showed a stepwise decrease because various chemicals were applied and bound to leather during processing. Even so, finished leather still possessed significantly higher biodegradability compared to leather-like PU and microfiber synthetic materials, demonstrating superior environmental sustainability of natural leather. The results are expected to provide support for the evaluation of the ecological properties of leather and green upgrade of the leather industry.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00151-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on marine collagen: sources, extraction methods, colloids properties, and food applications 海洋胶原蛋白综述:来源、提取方法、胶体特性和食品应用
Journal of Leather Science and Engineering Pub Date : 2024-03-18 DOI: 10.1186/s42825-024-00152-y
Shahzad Farooq, Muhammad Ijaz Ahmad, Shijie Zheng, Usman Ali, Yang Li, Cui Shixiu, Hui Zhang
{"title":"A review on marine collagen: sources, extraction methods, colloids properties, and food applications","authors":"Shahzad Farooq,&nbsp;Muhammad Ijaz Ahmad,&nbsp;Shijie Zheng,&nbsp;Usman Ali,&nbsp;Yang Li,&nbsp;Cui Shixiu,&nbsp;Hui Zhang","doi":"10.1186/s42825-024-00152-y","DOIUrl":"10.1186/s42825-024-00152-y","url":null,"abstract":"<div><p>The growing interest in valorizing industrial by-products has led researchers to focus on exploring different sources and optimizing collagen extraction conditions over the past decade. While bovine hide, cattle bones, pork, and pig skins remain the most abundant collagen sources, there is a growing trend in the industrial utilization of collagen from non-mammalian species. This review explores alternative marine collagen sources and summarizes emerging trends in collagen recovery from marine sources, with a particular focus on environmentally friendly methods. Additionally, this review covers the colloidal structure-forming properties of marine collagens, including foam, film, gel, and emulsion formation. It also highlights the potential and important applications of marine collagen in various food products. Based on the currently reported marine sources, collagens extracted from fish, jellyfish, and sea cucumbers were found to have the highest yield and mostly comprised type-I collagen, while crustaceans and mollusks yielded lower percentages of collagen. Traditional extraction techniques isolate collagen based on acetic acid and pepsin treatment, but they come with drawbacks such as being time-consuming, causing sample destruction, and using solvents. Conversely, marine collagen extracted using conventional methods assisted with ultrasonication resulted in higher yields and strengthened the triple-stranded helical structures. Recently, an increasing number of new applications have been found in the food industry for marine collagens, such as biodegradable film-forming materials, colloid stabilizers, foaming agents, and micro-encapsulating agents. Furthermore, collagen is a modern foodstuff and is extensively used in the beverage, dairy, and meat industries to increase the stability, consistency, and elasticity of products.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00152-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140145513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Xylan derived carbon sphere/graphene composite film with low resistance for supercapacitor electrode 用于超级电容器电极的低电阻木聚糖衍生碳球/石墨烯复合膜
Journal of Leather Science and Engineering Pub Date : 2024-03-15 DOI: 10.1186/s42825-024-00154-w
Jihai Cai, Yujin Li, Rongji Qin, Guangsheng Li, Xiaoying Wang
{"title":"Xylan derived carbon sphere/graphene composite film with low resistance for supercapacitor electrode","authors":"Jihai Cai,&nbsp;Yujin Li,&nbsp;Rongji Qin,&nbsp;Guangsheng Li,&nbsp;Xiaoying Wang","doi":"10.1186/s42825-024-00154-w","DOIUrl":"10.1186/s42825-024-00154-w","url":null,"abstract":"<div><p>Reduced graphene oxide (rGO) films suffer from low capacitance for inner unreduced oxygen functional groups, restacking of sheets and high contact resistance. Herein, carbon spheres derived from renewable xylan were added to graphene oxide with large sheet area to fabricate film by gelation and filtration, followed by in situ reduction for high-performance flexible supercapacitor. rGO film with transverse size about 13 μm showed a good specific capacitance of 967 mF/cm<sup>2</sup> at a scanning rate of 5 mV/s and increased to 1786 mF/cm<sup>2</sup> by in situ reducing its inner part, which generally remained oxidized due to outer hindering from hydrophobic graphene. Then, by hydrothermal carbonization of xylan and activation with KOH, activated carbon sphere (aXCS) was prepared, which had a diameter of 150–200 nm and a specific capacitance of 270 F/g. The aXCS acted as spacer and connector to avoid restacking of graphene sheets and decrease interlayer contact resistance, resulting 94% increase in capacitance performance from rGO film to aXCS/rGO film. Therefore, combined in situ reduction and enhancement through compositing aXCS, the final film (aXCS/rGO-AA) showed a boosted specific capacitance of 755 mF/cm<sup>2</sup> at 1 mA/cm<sup>2</sup> in double electrode system, power density of 22.5–2250 mW/cm<sup>2</sup>, and energy density of 11.88–25.2 mWh/cm<sup>2</sup>. Meanwhile, aXCS/rGO-AA had outstanding cycling stability that its specific capacitance maintained 108.7% after 10,000 cycles of charge–discharge, showing promising potential in wearable and portable electronics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00154-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable and one-pot fabrication of peptide chelated calcium from fish scale hydrolysates 从鱼鳞水解物中一次性可持续地制备多肽螯合钙
Journal of Leather Science and Engineering Pub Date : 2024-03-01 DOI: 10.1186/s42825-024-00150-0
Hongjie Dai, Yingnan Cao, Yu Fu, Mi Tang, Xin Feng, Liang Ma, Yuhao Zhang
{"title":"Sustainable and one-pot fabrication of peptide chelated calcium from fish scale hydrolysates","authors":"Hongjie Dai,&nbsp;Yingnan Cao,&nbsp;Yu Fu,&nbsp;Mi Tang,&nbsp;Xin Feng,&nbsp;Liang Ma,&nbsp;Yuhao Zhang","doi":"10.1186/s42825-024-00150-0","DOIUrl":"10.1186/s42825-024-00150-0","url":null,"abstract":"<div><p>Fish scales, considered as low-value by-products, contain peptides and hydroxyapatite that can be applied to produce peptide chelated calcium directly. This study developed a sustainable and one-pot fabrication method for the peptide-chelated calcium from fish scale hydrolysates (FSP-Ca). During pepsin hydrolysis, the releases of peptides (FSP), calcium, and phosphate from fish scales occurred simultaneously, and the chelation was also effectively performed. After a 6-h hydrolysis, the yield of FSP was 46.18%, and the dissolution rate of calcium was 49.53%. Under the optimal conditions (pH 7, chelation time of 25 min, and chelation temperature of 48 °C), a high chelation rate of 86.16% was obtained, with a calcium content of 81.8 mg/g. The results of UV absorption, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the successful chelation between FSP and calcium derived from fish scales. The –NH<sub>2</sub>, –COO<sup>–</sup>, N–H, C=O, C–H, and –OH groups in FSP participated in the formation of FSP-Ca.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00150-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reusing finished leather waste to produce pigmented thermoplastic polyurethane composite 再利用皮革成品废料生产着色热塑性聚氨酯复合材料
Journal of Leather Science and Engineering Pub Date : 2024-02-06 DOI: 10.1186/s42825-024-00149-7
Diego Giehl, Éverton Hansen, Luiz Carlos Robinson, Patrice Monteiro de Aquim
{"title":"Reusing finished leather waste to produce pigmented thermoplastic polyurethane composite","authors":"Diego Giehl,&nbsp;Éverton Hansen,&nbsp;Luiz Carlos Robinson,&nbsp;Patrice Monteiro de Aquim","doi":"10.1186/s42825-024-00149-7","DOIUrl":"10.1186/s42825-024-00149-7","url":null,"abstract":"<div><p>Footwear industries generate leather waste during the operation. Some of these wastes contain chromium, which may bring environmental concerns. This study aimed to reuse finished leather waste, the major part of these hazardous wastes, via producing a composite with thermoplastic polyurethane (TPU) for shoe soles. Finished leather waste containing black dyes and pigments was used to color the TPU. The finished leather waste was fragmented, milled, micronized and blended with TPU in a ratio of 10%, 15%, and 20% w/w to produce composite materials. The composite materials were evaluated by morphological and thermal characterizations, physical–mechanical analysis, and environmental tests (leaching and solubilization), which presented that the physical–mechanical and thermal properties were within the standard of shoe soles, and the composites can be classified as non-hazardous. The composites enabled a new way of coloring polymeric matrices and reusing leather waste.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00149-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of N-terminal modification of PAA with different chain lengths on the structure, thermal stability and pH sensitivity of succinylated collagen 不同链长的 PAA N 端修饰对琥珀酰化胶原的结构、热稳定性和 pH 敏感性的影响
Journal of Leather Science and Engineering Pub Date : 2024-02-05 DOI: 10.1186/s42825-024-00148-8
Juntao Zhang, Yang Liu, Haofei Xu, Peishan Sui, Tianyi Liu, Mingming Zheng, Evgeny A. Shirshin, Benmei Wei, Chengzhi Xu, Haibo Wang
{"title":"The impact of N-terminal modification of PAA with different chain lengths on the structure, thermal stability and pH sensitivity of succinylated collagen","authors":"Juntao Zhang,&nbsp;Yang Liu,&nbsp;Haofei Xu,&nbsp;Peishan Sui,&nbsp;Tianyi Liu,&nbsp;Mingming Zheng,&nbsp;Evgeny A. Shirshin,&nbsp;Benmei Wei,&nbsp;Chengzhi Xu,&nbsp;Haibo Wang","doi":"10.1186/s42825-024-00148-8","DOIUrl":"10.1186/s42825-024-00148-8","url":null,"abstract":"<div><p>The limitations of native collagen, such as thermal stability and solubility in physiological environments, can be improved by applying bioconjugation and synthetic chemistry techniques. However, the exquisite control of the modification site of collagen remains a challenge. In this work, pH-responsive poly(acrylic acid) (PAA) with different chain lengths was attached to the N-terminal α-amino groups of succinylated collagen using a site-specific modification strategy. Additionally, the structure, thermal stability, and pH sensitivity of succinylated collagen were explored. The modification rate of amino groups in the succinylated collagen-PAA bioconjugate (SPSC-PAA) was evaluated by the 2,4,6-trinitrobenzene sulfonic acid assay. The impact of N-terminal modification of PAA and its chain length on the thermal stability of collagen was explored by CD and DSC. These techniques revealed that the thermal stability of SPSC-Col is pH-responsive and closely related to the chain length of grafted PAA. The pH sensitivity of SPSC-PAA was further explored by rheology and turbidity. Subsquently, the critical pH and isoelectric point of SPSC-PAAs were also examined by turbidity and isoelectric point titration, respectively. This work provides a new insight into the N-terminal modification of collagen on its properties.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00148-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using proteomics to compare the molecular structures of sulfide and permeate-depilated sheepskins 利用蛋白质组学比较硫化羊皮和渗透脱水羊皮的分子结构
Journal of Leather Science and Engineering Pub Date : 2024-02-01 DOI: 10.1186/s42825-023-00147-1
Yi-Hsuan Tu, Trevor S. Loo, Mark L. Patchett, Gillian E. Norris
{"title":"Using proteomics to compare the molecular structures of sulfide and permeate-depilated sheepskins","authors":"Yi-Hsuan Tu,&nbsp;Trevor S. Loo,&nbsp;Mark L. Patchett,&nbsp;Gillian E. Norris","doi":"10.1186/s42825-023-00147-1","DOIUrl":"10.1186/s42825-023-00147-1","url":null,"abstract":"<div><p>An environmentally friendly method using real or artificial bovine milk permeate to both depilate and preserve sheepskins has been reported which completely and cleanly removed the wool from the hair follicle and had no detrimental effects on the skin. A proteomic analysis, assessing the relative abundance of proteins in matched permeate-depilated and chemically depilated (sulfide) sheepskins, showed variations in the levels of specific collagen types in the skin's basement membrane and other proteins associated with the follicles. These findings were corroborated by biochemical analyses of matched permeate depilated and raw skin samples, and provide clues to the mechanism of non-invasive and complete depilation. They also support the observation that permeate-depilated skins were smoother than their sulfide-depilated counterparts and resulted in leather with a superior surface.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-023-00147-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139657552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信