Recent advances and practical challenges in the research of decellularized matrices for the fabrication of tiny-diameter artificial arteries

Yan Liu, Can Cheng, Jiaqi Xing, Zhaoxi Deng, Xu Peng
{"title":"Recent advances and practical challenges in the research of decellularized matrices for the fabrication of tiny-diameter artificial arteries","authors":"Yan Liu,&nbsp;Can Cheng,&nbsp;Jiaqi Xing,&nbsp;Zhaoxi Deng,&nbsp;Xu Peng","doi":"10.1186/s42825-025-00192-y","DOIUrl":null,"url":null,"abstract":"<div><p>Despite advances in synthetic vascular grafts, replicating the dynamic biological functions of native microvasculature remains a critical challenge in cardiovascular tissue engineering. While polymer-based conduits offer scalability and dimensional versatility, the inherent bioinert nature leads to high failure rates in &lt; 6 mm diameter applications due to thrombotic complications and mechanical mismatch with host tissue. Decellularized matrices (dECM) scaffolds emerge as a biologically strategic alternative, preserving crucial vascular basement membrane components and biomechanical cues through collagen/elastin retention. The present review systematically elaborates the research advancements, critical determinants, and practical challenges in utilizing dECM for tiny-diameter artificial vessels (inner diameter &lt; 3 mm), while proposing three forward-looking solutions to address clinical translation barriers: (1) matrix optimization strategies through diameter-specific compliance matching and elastin reconstitution; (2) sterilization and preservation protocols preserving structural integrity with controlled immunogenicity; (3) immunomodulatory engineering via macrophage polarization regulation. The proposed methodologies establish innovative avenues for the engineering and clinical transplantation of tiny-diameter artificial vessels.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00192-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-025-00192-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in synthetic vascular grafts, replicating the dynamic biological functions of native microvasculature remains a critical challenge in cardiovascular tissue engineering. While polymer-based conduits offer scalability and dimensional versatility, the inherent bioinert nature leads to high failure rates in < 6 mm diameter applications due to thrombotic complications and mechanical mismatch with host tissue. Decellularized matrices (dECM) scaffolds emerge as a biologically strategic alternative, preserving crucial vascular basement membrane components and biomechanical cues through collagen/elastin retention. The present review systematically elaborates the research advancements, critical determinants, and practical challenges in utilizing dECM for tiny-diameter artificial vessels (inner diameter < 3 mm), while proposing three forward-looking solutions to address clinical translation barriers: (1) matrix optimization strategies through diameter-specific compliance matching and elastin reconstitution; (2) sterilization and preservation protocols preserving structural integrity with controlled immunogenicity; (3) immunomodulatory engineering via macrophage polarization regulation. The proposed methodologies establish innovative avenues for the engineering and clinical transplantation of tiny-diameter artificial vessels.

Graphical abstract

制备小直径人造动脉用脱细胞基质的研究进展与挑战
尽管合成血管移植物取得了进展,但复制天然微血管的动态生物学功能仍然是心血管组织工程的关键挑战。虽然聚合物管道具有可扩展性和尺寸通用性,但其固有的生物惰性导致了高温管道的高故障率。6毫米直径的应用,由于血栓并发症和机械不匹配的宿主组织。脱细胞基质(dECM)支架作为一种生物战略替代方案出现,通过胶原/弹性蛋白保留来保存重要的血管基底膜成分和生物力学线索。本文系统地阐述了dECM用于小直径人工血管(内径和内径)的研究进展、关键因素和实际挑战。(1)通过直径特异性顺应性匹配和弹性蛋白重构的矩阵优化策略;(2)保持结构完整性和控制免疫原性的灭菌和保存方案;(3)巨噬细胞极化调控的免疫调节工程。所提出的方法为小直径人工血管的工程和临床移植建立了创新的途径。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Leather Science and Engineering
Journal of Leather Science and Engineering 工程技术-材料科学:综合
CiteScore
12.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信