{"title":"Regulatory mechanism of ι-carrageenan oligosaccharides in coordination with calcium ions on the thermal gelation of sea cucumber collagen","authors":"Yonghao Liu, Fei Pan, Jiaqi Yu, Zifei Wang, Wenjun Peng, Wenli Tian, Xun Sun, Changhu Xue","doi":"10.1186/s42825-025-00216-7","DOIUrl":"10.1186/s42825-025-00216-7","url":null,"abstract":"<div><p>Sea cucumbers suffer from non-enzymatic deterioration during heat processing and storage, which significantly devaluates the product. In the present investigation, it was found that ι-carrageenan oligosaccharide (ι-CO) synergized with Ca<sup>2+</sup> is able to protect sea cucumbers from deterioration. The textural strength and water-holding capacity of the sea cucumber body wall were improved after treatment with ι-CO and Ca<sup>2+</sup>, and the collagen structure was more resistant to destructive experiments. In addition, pepsin-solubilized sea cucumber collagen (SCC) was extracted and demonstrated that the positive effect was due to co-gelation between ι-CO and collagen supported by rheological and thermal property studies. Furthermore, molecular dynamics simulations confirmed that ι-CO spontaneously binds to SCC, while Ca<sup>2+</sup> promotes the crosslinking strength of the ι-CO-SCC mixed gel and enhances its water-holding capacity and mechanical strength. Therefore, the ι-CO/Ca<sup>2+</sup> can permeate and stabilize collagen hydrogel, which provides valuable information for the development of new food additives to improve the texture of collagen-based foods.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00216-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145210192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khoi Minh Le, My-An Tran Le, Vo Minh Quan, Thong Lam Vu, Tin Anh Tran, Phu Phong Vo, An Huyen Lieu, Han Thi Ngoc To, Thi-Hiep Nguyen, Hoan Ngoc Doan
{"title":"Preparation and characterization of acellular membrane from yellowfin tuna (Thunnus albacares) skin for skin regeneration","authors":"Khoi Minh Le, My-An Tran Le, Vo Minh Quan, Thong Lam Vu, Tin Anh Tran, Phu Phong Vo, An Huyen Lieu, Han Thi Ngoc To, Thi-Hiep Nguyen, Hoan Ngoc Doan","doi":"10.1186/s42825-025-00218-5","DOIUrl":"10.1186/s42825-025-00218-5","url":null,"abstract":"<div><p>Full-thickness skin wounds pose a considerable clinical challenge because of the limited capacity for self-regeneration. Acellular materials derived from animals offer a promising solution to this issue. In the present investigation, an acellular scaffold is prepared from yellowfin tuna skin (<i>Thunnus albacares</i>) for skin regeneration application by comparing the efficacy of three chemical decellularization agents: sodium hydroxide (NaOH), Triton X-100 (TT), and sodium dodecyl sulfate (SDS). The impact of these agents on the resulting acellular dermal matrices was evaluated by assessing collagen preservation, DNA removal, residual fat and ash content, and structural integrity using hydroxyproline assay and chemical composition analysis. Mechanical properties, swelling behavior, degradation rate, water vapor transmission rate, moisture loss, and biocompatibility of the acellular membrane were also characterized. Furthermore, the regenerative potential of these samples was assessed in a porcine full-thickness skin defect model. The results demonstrated that all three decellularization methods effectively removed cellular components, with varying degrees of collagen preservation and ECM structural alteration. TT treatment yielded the highest collagen retention and a relatively intact fibrous structure, while NaOH caused significant structural damage. Mechanical testing revealed that hydration significantly improved the elasticity of TT- and SDS-treated samples. In vitro biocompatibility assays showed no significant cytotoxicity or hemolysis. These findings suggest that the acellular membrane holds promise as a biomaterial for skin regeneration applications due to its effective decellularization, preserved collagen structure, and favorable biocompatibility.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00218-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145073915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Zheng, Ying Zhang, Nianhua Dan, Yining Chen, Zhengjun Li, Yunbing Wang
{"title":"Multifunctional hydrogel–acellular dermal matrix composite patch: an anticalcification barrier with antibacterial and anti-inflammatory properties for abdominal wall repair","authors":"Xin Zheng, Ying Zhang, Nianhua Dan, Yining Chen, Zhengjun Li, Yunbing Wang","doi":"10.1186/s42825-025-00211-y","DOIUrl":"10.1186/s42825-025-00211-y","url":null,"abstract":"<div><p>Calcification, infection, and inflammation are common complications associated with the in vivo application of biological patches. Porcine acellular dermal matrix (pADM), composed mainly of collagen with excellent bioactivity, is widely utilized as a substrate for such patches. However, integrating multiple therapeutic functions into pADM remains a significant challenge. To overcome this limitation, a hydrogel-encapsulated pADM patch (H-Cur-pADM) was developed, aiming to provide barrier protection and multifunctional enhancement. This design involves the in situ formation of a curcumin-loaded hydrogel (GelMA-DTT-Cur) on the surface of pADM via a thiol–ene click reaction. The resulting hybrid not only reinforces the anticalcification capacity of the patch but also imparts anti-infective and anti-inflammatory properties. By combining the mechanical support of pADM with the functional versatility of the hydrogel, this innovative approach enhances the overall performance of the biological patch. The GelMA-DTT-Cur hydrogel layer demonstrated robust structural integrity, interconnected porosity, and sustained release of curcumin micelles following a Fickian diffusion mechanism. In vitro, the hydrogel-encapsulated pADM displayed significant antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, good cytocompatibility, and pronounced anticalcification properties. In vivo studies showed that calcium deposition in the H-Cur-pADM group was only 5.2% of that observed in glutaraldehyde-cross-linked pADM after 21 days of implantation. The H-Cur-pADM patch also displayed strong anti-inflammatory effects and effectively promoted healing in an abdominal wall defect model. This work presents a novel strategy for improving the therapeutic performance of biological patches by integrating drug-loaded hydrogel encapsulation with pADM, offering promising potential for clinical applications in abdominal wall repair.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00211-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145007883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovering potential anti-skin-aging peptides in collagen: computer-assisted rapid screening and structure–activity relationships","authors":"Ruihao Zhang, Yang Li, Yonghui Li, Hui Zhang","doi":"10.1186/s42825-025-00215-8","DOIUrl":"10.1186/s42825-025-00215-8","url":null,"abstract":"<div><p>The application of peptides as inhibitors of skin aging is a promising area of research. Previous researches have predominantly focused on extracting anti-aging peptides from the collagen of specific animals, while large-scale rapid screening and analysis of the structure–activity relationships of these peptides have been scarcely reported. In the present investigation, we developed a machine learning model for screening potential anti-skin-aging peptides (PASAPs), achieving a Matthews correlation coefficient (MCC) of 0.927 ± 0.044 and balanced accuracy (BACC) of 0.963 ± 0.022. These metrics surpassed those of the existing PeptideRanker model, which is widely used in bioactive peptide studies. Based on in silico screening, we identified and synthesized six novel PASAPs derived from tilapia collagen: KKHVWFGE, NGTPGAMGPR, PGAAGLKGDR, DGAPGPKGDR, TGPVGMPGAR, and GAPGGAGGVGEPGR. In vitro assays revealed that all six peptides exhibited significant inhibitory activity against aging-related enzymes, with the most pronounced effects on elastase and collagenase. A comprehensive analysis of the C-terminal amino acid residues indicated that the presence of arginine (R) at the C-terminus notably enhanced peptide binding to aging-related enzymes. This enhancement was attributed to an increased number of hydrogen bonds and stronger chemical interactions, which augmented the aging-related enzyme inhibitory activity of the peptides. In summary, this study proposed an effective strategy for discovering PASAPs from collagen and validated the machine learning model through experimental evidence. Structure–activity relationship insights can guide the synthesis of bioactive peptides and the selection of proteases for bioactive peptide production.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00215-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bio-inspired natural fibers-derived e-skin equipped with intelligent drug-release system for advanced robustly-integrated melanoma therapy","authors":"Xinhua Liu, Yifan Fei, Boqiang Cui, Xing Chen, Jiamin Zhang, Ouyang Yue, Zhongxue Bai, Ling Wen, Huie Jiang","doi":"10.1186/s42825-025-00210-z","DOIUrl":"10.1186/s42825-025-00210-z","url":null,"abstract":"<div><p>Malignant melanoma, a highly aggressive malignancy, necessitates innovative therapeutic strategies integrating biomaterial innovation with multimodal treatment modalities. Herein, we report the development of a collagen-derived bioelectronic skin (c-ADM) nanoengineered via interfacial assembly of porcine acellular dermal matrix (ADM)—a natural collagen-rich scaffold—with conductive poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and copper sulfide nanoparticles (CuS-NPs). This hybrid system synergizes photothermal ablation, stimuli-responsive drug delivery, and electrostimulation (ES) for comprehensive postoperative melanoma management and tissue regeneration. The c-ADM platform exhibits superior mechanical robustness, enzymatic resistance, and biocompatibility, enabling real-time motion monitoring while maintaining structural integrity in dynamic physiological environments. Leveraging the photothermal efficiency of CuS-NPs, localized hyperthermia (ΔT > 40 °C) under near-infrared (NIR) irradiation induces irreversible melanoma cell apoptosis. Concurrently, laser-triggered temperature-responsive drug release enables synchronized photothermal-chemotherapy, with sustained doxorubicin release profiles at tumor sites. Notably, pH-responsive Cu<sup>2</sup>⁺ liberation from CuS-NPs facilitates intelligent functional switching: bactericidal activity at tumor microenvironment pH (5.0–6.0) and pro-regenerative effects under physiological pH (7.4) for wound healing. In vitro/in vivo assessments confirm c-ADM’s dual therapeutic efficacy including ES-enhanced cancer cell death via mitochondrial dysfunction and accelerated full-thickness skin regeneration through collagen remodeling and angiogenesis modulation. This work establishes a collagen-based bioelectronic scaffold for personalized oncological care, integrating intraoperative tumor eradication, postoperative surveillance, and adaptive tissue reconstruction.</p><h3>Graphic Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00210-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144843175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Fang, Xiaoli Wang, Yijun Tao, Yujie Su, Weihua Dan, Zhanhong Du, Xiaoheng Liu, Yang Shen
{"title":"Collagen-based biomaterials in neural injury repair: current advances and future perspectives","authors":"Fei Fang, Xiaoli Wang, Yijun Tao, Yujie Su, Weihua Dan, Zhanhong Du, Xiaoheng Liu, Yang Shen","doi":"10.1186/s42825-025-00209-6","DOIUrl":"10.1186/s42825-025-00209-6","url":null,"abstract":"<div><p>Neural injuries, such as traumatic brain injury, spinal cord injury, and peripheral nerve injury, result in substantial physical and functional impairments, significantly reducing quality of life. Current treatments, including drug therapy and surgical interventions, have limited efficacy in promoting neural regeneration and facilitating functional recovery. To overcome these limitations, collagen-based biomaterials have emerged as a promising alternative, owing to their biocompatibility, biodegradability, low immunogenicity, and ability to mimic the natural extracellular matrix. This review highlights recent applications of collagen-based materials in neural injury repair, including cell therapies, neurotrophin delivery, and extracellular vesicle carriers. These materials have shown potential in promoting cell survival, axonal regeneration, and reducing inflammation across various neural injury models. Despite challenges in optimizing scaffold design, controlling drug release, and ensuring biocompatibility, promising preclinical results suggest a bright future for collagen-based biomaterials in treating neural injuries.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00209-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuhao Zhou, Yuer Zhang, Hongjie Dai, Yuhao Zhang, Yu Fu
{"title":"Correction: The potential of undenatured type II collagen against arthritis: a review","authors":"Yuhao Zhou, Yuer Zhang, Hongjie Dai, Yuhao Zhang, Yu Fu","doi":"10.1186/s42825-025-00213-w","DOIUrl":"10.1186/s42825-025-00213-w","url":null,"abstract":"","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00213-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145162485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular weight-controllable oral yak skin collagen for enhanced healing of photoaged skin","authors":"Zhangwen Liu, Na Li, Wenhua Li, Shimeng Xu, Linyan Yao, Jianxi Xiao","doi":"10.1186/s42825-025-00207-8","DOIUrl":"10.1186/s42825-025-00207-8","url":null,"abstract":"<div><p>Photoaging skin caused by excessive UV radiation has been one of the most common skin diseases, leading to wrinkles, hyperpigmentation, inflammation, and even skin cancer. Oral collagen supplements have emerged as a potential strategy for photoaged skin; however, they suffer from unclear molecular weights and high risk of disease transmission. Herein, we have for the first time developed a series of molecular weight-controllable oral yak skin collagen (OYC) by the molecular weight-directed enzymolysis-chromatography combined strategy. Toxicological studies indicated that OYC displayed good biocompatibility and no organ toxicity. Combo evaluations revealed that OYC contributed to the restoration of photoaged skin to healthy levels. Histological analysis demonstrated that OYC improved the histopathological changes, significantly accelerating the regeneration of collagen fibers. Antioxidant indicators analysis further indicated that OYC alleviated oxidative stress induced by UV irradiation. Notably, OYC with medium molecular weight (MOYC) exhibited the most effective anti-photoaging properties, likely due to its exceptional ability to scavenge reactive oxygen species, improved intestinal absorption, and optimal resistance to degradation. This orally administered yak skin collagen provides a new strategy and theoretical basis for the prevention and treatment of photoaged skin, offering broad prospects in the fields of nutritional supplements and skincare products.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00207-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145162054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Liu, Xuyang Chen, Juntao Kang, Bi Shi, Yunhang Zeng
{"title":"Modulation of hide protein resistance to enzymatic hydrolysis by calcium ions: rational design of enzyme-assisted unhairing for high-quality leather production","authors":"Hao Liu, Xuyang Chen, Juntao Kang, Bi Shi, Yunhang Zeng","doi":"10.1186/s42825-025-00208-7","DOIUrl":"10.1186/s42825-025-00208-7","url":null,"abstract":"<div><p>Enzymatic unhairing is an environmentally friendly and efficient method for leather processing. However, controlling protease hydrolysis remains challenging, leading to incomplete hair removal and potential grain damage. In modern leather manufacturing, the synergistic application of proteases, lime, and sulfide is increasingly employed to achieve satisfactory hair-saving unhairing performance. This study investigated the action mechanism of calcium ions in modulating the hydrolysis of hide proteins by proteases and proposed a balanced enzyme-assisted unhairing process. Enzymological and fluorescence spectroscopy analyses revealed that calcium ions could enhance the enzymatic resistance of hide proteins, including noncollagenous proteins and collagen, by binding to them. This enhancement in enzymatic resistance was more pronounced for globular proteins than for collagen fibers. In detail, following the addition of 20 g/L calcium ions, the hydrolytic activity of neutral and alkaline proteases decreased by 66.7% and 57.9% on bovine serum albumin, and by 40.7% and 48.1% on collagen fibers, respectively. Furthermore, the performance of the five unhairing processes was evaluated by varying the sequence of lime and protease application and type of protease used. Results indicated that while calcium ions exerted a protective effect on hide proteins and reduced damage to collagen fibers, they simultaneously hindered the removal of undesired noncollagenous proteins during unhairing. Consequently, the sequential application of lime followed by proteases resulted in the inadequate removal of interfibrillar substances, leading to unsatisfactory leather quality. Additionally, compared with an alkaline protease, a neutral protease was more easily inhibited under alkaline unhairing conditions, posed a lower risk of damage to the hide grain. Therefore, the neutral protease–lime–sodium sulfide unhairing process was chosen as the optimal strategy. This process involves the addition of neutral protease (50 U/g hide) for 60 min, followed by 1.0% lime for 90 min and 2.0% sodium sulfide for 90 min. These findings provide scientific insights for designing a controlled and efficient approach to enzyme-assisted unhairing processes.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00208-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Lin, Zhen Du, Lingyong Xu, Chengming Li, Yuepeng Guan, Yaqin Huang
{"title":"Nitrogen-rich fibrous carbon enabling polysulfide conversion for lithium–sulfur batteries","authors":"Hai Lin, Zhen Du, Lingyong Xu, Chengming Li, Yuepeng Guan, Yaqin Huang","doi":"10.1186/s42825-025-00206-9","DOIUrl":"10.1186/s42825-025-00206-9","url":null,"abstract":"<div><p>The practical implementation of lithium–sulfur (Li–S) batteries is hindered by their poor rate performance and rapid capacity fade, primarily due to the sluggish kinetics of polysulfide conversion. To overcome these challenges, a nitrogen-rich fibrous carbon (NFC) material was synthesized using gelatin and g-C<sub>3</sub>N<sub>4</sub> as raw materials through a stepwise pyrolysis process. The unique fibrous microstructure of NFC endows it with high ionic and electronic conductivities, facilitating rapid Li ion and electron transports. Furthermore, nitrogen doping increases the electrochemical performance of the Li–S battery by improving polysulfide adsorption and conversion kinetics. Consequently, the Li–S battery incorporated with NFC demonstrates significantly improved rate performance, exhibiting a high discharge specific capacity of 721 mAh g<sup>−1</sup> at 4 C. Additionally, the pouch cell incorporating NFC displays a high average capacity of 821.6 mAh g<sup>−1</sup> over 40 cycles at 0.1 C, with high cycling stability and a capacity retention rate exceeding 96%. These results highlight the effectiveness of NFC in improving the cycle longevity of Li–S batteries, thereby heralding a significant stride forward in their practical implementation in energy storage systems. </p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00206-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145170872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}