Enzyme–and GSH–responsive gelatin coated magnetic multi-shell hollow mesoporous organosilicon nanoparticles for avermectin controlled release

Jiazhen Gao, Pengyu Luo, Siqiang Shen, Ying Liu, Xiaoyun Li, Xiaoying Wang
{"title":"Enzyme–and GSH–responsive gelatin coated magnetic multi-shell hollow mesoporous organosilicon nanoparticles for avermectin controlled release","authors":"Jiazhen Gao,&nbsp;Pengyu Luo,&nbsp;Siqiang Shen,&nbsp;Ying Liu,&nbsp;Xiaoyun Li,&nbsp;Xiaoying Wang","doi":"10.1186/s42825-025-00191-z","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the utilization of pesticides and reduce environmental risks, we constructed the magnetic recyclable and dual stimulus-responsive microspheres to achieve on-demand pesticide release. Magnetic multi-shell hollow mesoporous organosilicon nanoparticles (mMSN) were prepared by one-step hydrothermal method and loaded with pesticide avermectin (A@mMSN), afterward A@mMSN was coated with gelatin through emulsification and chemical cross-linking to prepare A@mMSN@G microspheres (21.5 ± 9.7 μm). After being absorbed by the pests, the gelatin layer was hydrolyzed with the neutral protease, and the disulfide bonds within mMSN framework were decomposed by glutathione (GSH), endowing A@mMSN@G microspheres with enzyme and GSH responsiveness to achieve sustained avermectin release till 7 days (about 3.5 times that of the commercial avermectin emulsion). Importantly, the A@mMSN@G microspheres containing Fe<sub>3</sub>O<sub>4</sub> nanoparticles could be easily magnetically collected from soil with a recovery ratio of 63.7%, to reduce the environmental risks. With excellent biosafety, A@mMSN@G microspheres showed outstanding pest control effects till two weeks and the growth of cabbage was not affected by it. Therefore, based on the recyclability and dual stimulus-responsive controllable release, the fabricated A@mMSN@G microspheres have broad application potential in pesticide delivery.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-025-00191-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-025-00191-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the utilization of pesticides and reduce environmental risks, we constructed the magnetic recyclable and dual stimulus-responsive microspheres to achieve on-demand pesticide release. Magnetic multi-shell hollow mesoporous organosilicon nanoparticles (mMSN) were prepared by one-step hydrothermal method and loaded with pesticide avermectin (A@mMSN), afterward A@mMSN was coated with gelatin through emulsification and chemical cross-linking to prepare A@mMSN@G microspheres (21.5 ± 9.7 μm). After being absorbed by the pests, the gelatin layer was hydrolyzed with the neutral protease, and the disulfide bonds within mMSN framework were decomposed by glutathione (GSH), endowing A@mMSN@G microspheres with enzyme and GSH responsiveness to achieve sustained avermectin release till 7 days (about 3.5 times that of the commercial avermectin emulsion). Importantly, the A@mMSN@G microspheres containing Fe3O4 nanoparticles could be easily magnetically collected from soil with a recovery ratio of 63.7%, to reduce the environmental risks. With excellent biosafety, A@mMSN@G microspheres showed outstanding pest control effects till two weeks and the growth of cabbage was not affected by it. Therefore, based on the recyclability and dual stimulus-responsive controllable release, the fabricated A@mMSN@G microspheres have broad application potential in pesticide delivery.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Leather Science and Engineering
Journal of Leather Science and Engineering 工程技术-材料科学:综合
CiteScore
12.80
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信