D. Yu, L. Liu, P. Huang, F. Zhang, B. Chen, B. Gao, Y. Hou, D. Han, Y. Wang, J. Kang, X. Zhang
{"title":"Self- compliance unipolar resistive switching and mechanism of Cu/SiO2/TiN RRAM devices","authors":"D. Yu, L. Liu, P. Huang, F. Zhang, B. Chen, B. Gao, Y. Hou, D. Han, Y. Wang, J. Kang, X. Zhang","doi":"10.1109/SNW.2012.6243356","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243356","url":null,"abstract":"CMOS compatible Cu/SiO2/TiN-based resistive random access memory (RRAM) was fabricated and investigated. Unique self-compliance unipolar resistive switching (RS) was observed, as well as good retention and uniformity of resistance states. A physical model based on formation and rupture of Cu conductive filament (CF) is proposed, considering both thermal and electrical effect, and verified by experiments.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90897349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical distribution of RTS amplitudes in 20nm SOI FinFETs","authors":"Xingsheng Wang, A. Brown, B. Cheng, A. Asenov","doi":"10.1109/SNW.2012.6243347","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243347","url":null,"abstract":"This abstract presents a comprehensive 3D simulation study on the impact of a single interface trapped charge in emerging 20nm gate-length FinFETs on an SOI substrate. The impact of the location of trapped charges on the Random Telegraph Signal (RTS) amplitudes is studied in detail. The RTS amplitude associated with particular trap position depends on the complex current density distribution in the Fin and is modified by `native' statistical variability sources such as metal gate granularity (MGG), line edge roughness (LER), and random discrete dopants (RDD).","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85788403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-electron transport through a single donor at elevated temperatures","authors":"E. Hamid, D. Moraru, T. Mizuno, M. Tabe","doi":"10.1109/SNW.2012.6243293","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243293","url":null,"abstract":"We showed that, in nanoscale doped SOIFETs, new current peaks become observable as temperature is increased. For smallest 1-disk devices, a final new tunneling current peak has been observed even at T = 100 K, indicating that such patterned-channel devices are suitable for high temperature tunneling operation. Ionization energy was estimated to be about 5 times larger than for bulk Si, due to dielectric and confinement effect.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76660196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seongjae Cho, Hyungjin Kim, Min-Chul Sun, T. Kamins, Byung-Gook Park, J. Harris
{"title":"Simulation study on process conditions for high-speed silicon photodetector and quantum-well structuring for increased number of wavelength discriminations","authors":"Seongjae Cho, Hyungjin Kim, Min-Chul Sun, T. Kamins, Byung-Gook Park, J. Harris","doi":"10.1109/SNW.2012.6243286","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243286","url":null,"abstract":"In this work, process conditions and geometric parameters for high-speed p-i-n silicon photodetector are optimized by device simulation. Efforts were made to build up criteria for device fabrication based on silicon epitaxy. For an optimized silicon photodetector, a bandwidth as wide as 80 GHz was obtained at 1 V. Furthermore, a way of increasing wavelength discriminations by introducing silicon-germanium quantum wells for multiple-wavelength signal processing is exploited.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87265779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Chen, B. Gao, Y. Fu, R. Liu, L. Ma, P. Huang, F. Zhang, L. Liu, X. Liu, J. Kang, G. Lian
{"title":"Co-existed unipolar and bipolar resistive switching effect of HfOx-based RRAM","authors":"B. Chen, B. Gao, Y. Fu, R. Liu, L. Ma, P. Huang, F. Zhang, L. Liu, X. Liu, J. Kang, G. Lian","doi":"10.1109/SNW.2012.6243333","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243333","url":null,"abstract":"Both unipolar and bipolar resistive switching behaviors are demonstrated and investigated in the TaTiN/HfOx/Pt structured RRAM devices. A physical model based on the recombination among the electron-depleted oxygen vacancies (VO2+) and the oxygen ions (O2-) released from the TaTiN electrode is proposed to clarify the co-existed bipolar and unipolar resistive switching effect. In the proposed physical model, Joule heating controlled O2- decomposition and electric-field controlled O2- drift dominate the unipolar and bipolar resistive switching behaviors, respectively.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90415433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of static noise margin and power-gating efficiency of a new nonvolatile SRAM cell using pseudo-spin-MOSFETs","authors":"Y. Shuto, S. Yamamoto, S. Sugahara","doi":"10.1109/SNW.2012.6243330","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243330","url":null,"abstract":"Static noise margins (SNMs) and power-gating efficiency were computationally analyzed for our proposed nonvolatile SRAM (NV-SRAM) cell based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque MTJs (STT-MTJs). The NV-SRAM cell has the same SNMs as an optimized 6T-SRAM cell. SNMs for other recently-proposed NV-SRAM cells using STT-MTJs were also evaluated, and we showed that their SNMs were deteriorated owing to the effect of the constituent STT-MTJs. Break-even time (BET) and power efficiency were analyzed for the NV-SRAM cell using PS-MOSFETs. The BET can be successfully minimized by controlling the bias of the cell. The average power dissipation can be effectively reduced by power-gating (PG) executions, and the further reduction is made possible by introducing a sleep mode.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89087947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Du, D. Putranto, H. Satoh, A. Ono, P. Priambodo, D. Hartanto, H. Inokawa
{"title":"Optoelectrical lifetime evaluation of single holes in SOI MOSFET","authors":"Wei Du, D. Putranto, H. Satoh, A. Ono, P. Priambodo, D. Hartanto, H. Inokawa","doi":"10.1109/SNW.2012.6243297","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243297","url":null,"abstract":"Optoelectrical method to evaluate the lifetime of single holes in SOI MOSFET is presented, in which the device is illuminated with a continuous light and the histograms of the digitized drain current is analyzed. It was found that smaller number of holes and the higher transverse electric field greatly enhance the hole lifetime.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90876587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Kodera, Y. Fukuoka, K. Takeda, T. Obata, K. Yoshida, K. Sawano, K. Uchida, Y. Shiraki, S. Tarucha, S. Oda
{"title":"Fabrication and characterization of Si/SiGe quantum dots with capping gate","authors":"T. Kodera, Y. Fukuoka, K. Takeda, T. Obata, K. Yoshida, K. Sawano, K. Uchida, Y. Shiraki, S. Tarucha, S. Oda","doi":"10.1109/SNW.2012.6243291","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243291","url":null,"abstract":"We study transport properties of quantum point contacts (QPCs) and quantum dots (QDs) with a global capping gate, fabricated on a Si/SiGe high electron mobility transistor (HEMT) wafer. By biasing the capping gate negatively, we succeed in making QPC operation point of surface Schottky gate negatively smaller and then reducing noise. We also observe Coulomb oscillations using a QD structure by suppressing charging noise with negative capping gate voltage.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82596862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Jung-Kubiak, J. Gill, T. Reck, C. Lee, J. Siles, G. Chattopadhyay, R. Lin, K. Cooper, I. Mehdi
{"title":"Silicon microfabrication technologies for THz applications","authors":"C. Jung-Kubiak, J. Gill, T. Reck, C. Lee, J. Siles, G. Chattopadhyay, R. Lin, K. Cooper, I. Mehdi","doi":"10.1109/SNW.2012.6243285","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243285","url":null,"abstract":"Silicon micromachining technology is naturally suited for making THz components, where precision and accuracy are essentials. We report here the development of robust micromachining techniques to enable novel active and passive components in the submillimeter-wave region. These features will enable large format submillimeter-wave heterodyne arrays and 3-D integration in the THz region, where fabricating circuits and structures becomes difficult with conventional machining.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80946270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Kamitake, K. Ohara, M. Uenuma, B. Zheng, Y. Ishikawa, I. Yamashita, Y. Uraoka
{"title":"Nanodot-type floating gate memory with high-density nanodot array formed utilizing Listeria Dps","authors":"H. Kamitake, K. Ohara, M. Uenuma, B. Zheng, Y. Ishikawa, I. Yamashita, Y. Uraoka","doi":"10.1109/SNW.2012.6243352","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243352","url":null,"abstract":"We formed a high-density two-dimensional nanodot array by utilizing Ti-binding Dps (TD) which is a Listeria Dps with Ti-binding peptides. A high-density nanodot array over 1012 cm-2 was formed on a SiO2 at low temperature by specific adsorption of TD. The hysteresis of the MOS capacitor with nanodot array formed utilizing TD was larger than that of the MOS capacitor fabricated utilizing ferritin. This research contributes to realizing future memory devices.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84933166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}