2012 IEEE Silicon Nanoelectronics Workshop (SNW)最新文献

筛选
英文 中文
Self- compliance unipolar resistive switching and mechanism of Cu/SiO2/TiN RRAM devices Cu/SiO2/TiN RRAM器件的自适应单极电阻开关及其机制
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243356
D. Yu, L. Liu, P. Huang, F. Zhang, B. Chen, B. Gao, Y. Hou, D. Han, Y. Wang, J. Kang, X. Zhang
{"title":"Self- compliance unipolar resistive switching and mechanism of Cu/SiO2/TiN RRAM devices","authors":"D. Yu, L. Liu, P. Huang, F. Zhang, B. Chen, B. Gao, Y. Hou, D. Han, Y. Wang, J. Kang, X. Zhang","doi":"10.1109/SNW.2012.6243356","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243356","url":null,"abstract":"CMOS compatible Cu/SiO2/TiN-based resistive random access memory (RRAM) was fabricated and investigated. Unique self-compliance unipolar resistive switching (RS) was observed, as well as good retention and uniformity of resistance states. A physical model based on formation and rupture of Cu conductive filament (CF) is proposed, considering both thermal and electrical effect, and verified by experiments.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"3 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90897349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Statistical distribution of RTS amplitudes in 20nm SOI FinFETs 20nm SOI finfet中RTS振幅的统计分布
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243347
Xingsheng Wang, A. Brown, B. Cheng, A. Asenov
{"title":"Statistical distribution of RTS amplitudes in 20nm SOI FinFETs","authors":"Xingsheng Wang, A. Brown, B. Cheng, A. Asenov","doi":"10.1109/SNW.2012.6243347","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243347","url":null,"abstract":"This abstract presents a comprehensive 3D simulation study on the impact of a single interface trapped charge in emerging 20nm gate-length FinFETs on an SOI substrate. The impact of the location of trapped charges on the Random Telegraph Signal (RTS) amplitudes is studied in detail. The RTS amplitude associated with particular trap position depends on the complex current density distribution in the Fin and is modified by `native' statistical variability sources such as metal gate granularity (MGG), line edge roughness (LER), and random discrete dopants (RDD).","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"31 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85788403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Single-electron transport through a single donor at elevated temperatures 高温下单电子通过单一供体的传递
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243293
E. Hamid, D. Moraru, T. Mizuno, M. Tabe
{"title":"Single-electron transport through a single donor at elevated temperatures","authors":"E. Hamid, D. Moraru, T. Mizuno, M. Tabe","doi":"10.1109/SNW.2012.6243293","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243293","url":null,"abstract":"We showed that, in nanoscale doped SOIFETs, new current peaks become observable as temperature is increased. For smallest 1-disk devices, a final new tunneling current peak has been observed even at T = 100 K, indicating that such patterned-channel devices are suitable for high temperature tunneling operation. Ionization energy was estimated to be about 5 times larger than for bulk Si, due to dielectric and confinement effect.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"77 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76660196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation study on process conditions for high-speed silicon photodetector and quantum-well structuring for increased number of wavelength discriminations 高速硅光电探测器工艺条件及增加波长分辨数的量子阱结构模拟研究
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243286
Seongjae Cho, Hyungjin Kim, Min-Chul Sun, T. Kamins, Byung-Gook Park, J. Harris
{"title":"Simulation study on process conditions for high-speed silicon photodetector and quantum-well structuring for increased number of wavelength discriminations","authors":"Seongjae Cho, Hyungjin Kim, Min-Chul Sun, T. Kamins, Byung-Gook Park, J. Harris","doi":"10.1109/SNW.2012.6243286","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243286","url":null,"abstract":"In this work, process conditions and geometric parameters for high-speed p-i-n silicon photodetector are optimized by device simulation. Efforts were made to build up criteria for device fabrication based on silicon epitaxy. For an optimized silicon photodetector, a bandwidth as wide as 80 GHz was obtained at 1 V. Furthermore, a way of increasing wavelength discriminations by introducing silicon-germanium quantum wells for multiple-wavelength signal processing is exploited.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"69 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87265779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-existed unipolar and bipolar resistive switching effect of HfOx-based RRAM hfox基RRAM的单极和双极电阻开关效应共存
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243333
B. Chen, B. Gao, Y. Fu, R. Liu, L. Ma, P. Huang, F. Zhang, L. Liu, X. Liu, J. Kang, G. Lian
{"title":"Co-existed unipolar and bipolar resistive switching effect of HfOx-based RRAM","authors":"B. Chen, B. Gao, Y. Fu, R. Liu, L. Ma, P. Huang, F. Zhang, L. Liu, X. Liu, J. Kang, G. Lian","doi":"10.1109/SNW.2012.6243333","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243333","url":null,"abstract":"Both unipolar and bipolar resistive switching behaviors are demonstrated and investigated in the TaTiN/HfOx/Pt structured RRAM devices. A physical model based on the recombination among the electron-depleted oxygen vacancies (VO2+) and the oxygen ions (O2-) released from the TaTiN electrode is proposed to clarify the co-existed bipolar and unipolar resistive switching effect. In the proposed physical model, Joule heating controlled O2- decomposition and electric-field controlled O2- drift dominate the unipolar and bipolar resistive switching behaviors, respectively.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"51 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90415433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Selective gas sensing with a single graphene-on-silicon transistor 单石墨烯-硅晶体管的选择性气体传感
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243283
A. Balandin, S. Rumyantsev, G. Liu, M. Shur, R. Potyrailo
{"title":"Selective gas sensing with a single graphene-on-silicon transistor","authors":"A. Balandin, S. Rumyantsev, G. Liu, M. Shur, R. Potyrailo","doi":"10.1109/SNW.2012.6243283","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243283","url":null,"abstract":"The low-frequency 1/f noise in graphene transistors has been studied extensively owing to the proposed graphene applications in analog devices and communication systems [1-5]. The studies were motivated by the fact that the low-frequency noise can be up-converted by device nonlinearity and contribute to the phase noise of the system. Similarly, the sensor sensitivity is often limited by the electronic low-frequency noise. Therefore, noise is usually considered as one of the main limiting factors for the device or overall system operation. However, the electronic noise spectrum itself can be used as a sensing parameter increasing the sensor sensitivity and selectivity. Here, we show that vapors of different chemicals produce distinguishably different effects on the low-frequency noise spectra of the graphene-on-Si transistor. Our study showed that some gases change the electrical resistance of pristine graphene devices without changing their low-frequency noise spectra while other gases modify the noise spectra by inducing Lorentzian components with distinctive features. The characteristic corner frequency fC of the Lorentzian noise bulges in graphene devices is different for different chemicals and varies from fC=10 - 20 Hz for tetrahydrofuran to fC=1300 - 1600 Hz for chloroform. We tested the selected set of chemicals vapors on different graphene device samples and alternated different vapors for the same samples. The obtained results indicate that 1/f noise in combination with other sensing parameters can allow one to achieve the selective gas sensing with a single pristine graphene transistor. Our method of gas sensing with graphene does not require graphene surface functionalization or fabrication of an array of the devices with each tuned to a certain chemical. The observation of the Lorentzian components in the vapor-exposed graphene can also help in developing an accurate theoretical description of the noise mechanism in graphene.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"54 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83852206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientation and size effects on ballistic electron transport properties in gate-all-around rectangular germanium nanowire FETs 取向和尺寸对栅极全方位矩形锗纳米线场效应管弹道电子输运特性的影响
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243360
S. Mori, N. Morioka, J. Suda, T. Kimoto
{"title":"Orientation and size effects on ballistic electron transport properties in gate-all-around rectangular germanium nanowire FETs","authors":"S. Mori, N. Morioka, J. Suda, T. Kimoto","doi":"10.1109/SNW.2012.6243360","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243360","url":null,"abstract":"We calculated the conduction band structure of GeNWs by a tight-binding model and obtained the fundamental understanding of electron transport characteristics in [001], [110], [111], and [112] GeNW FETs. The simulation of ballistic electron transport revealed that [110] GeNW FETs on the (001) face achieve high drive current as well as high injection velocity, being the best choice for n-channel FETs.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78342804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation into the effect of the variation of gate dimensions on program characteristics in 3D NAND flash array 栅极尺寸变化对三维NAND闪存阵列程序特性影响的研究
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243320
J. Y. Seo, Yoon Kim, Se Hwan Park, Wandong Kim, Do-Bin Kim, Jong-Ho Lee, Hyungcheol Shin, Byung-Gook Park
{"title":"Investigation into the effect of the variation of gate dimensions on program characteristics in 3D NAND flash array","authors":"J. Y. Seo, Yoon Kim, Se Hwan Park, Wandong Kim, Do-Bin Kim, Jong-Ho Lee, Hyungcheol Shin, Byung-Gook Park","doi":"10.1109/SNW.2012.6243320","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243320","url":null,"abstract":"In 3D stacked NAND flash memory, the number of stacked layers tends to increase for high density storage capacity. With the increase of the height of devices, it is important to achieve a good vertical etch profile by which word line (WL) gate dimensions are affected. In this paper, we investigate the effect of the variation of gate dimensions on the program characteristics in 3D NAND flash memory array by using TCAD simulation. Also, we compare the cell characteristics of NAND flash with different structures, gate-all-around (GAA) and double gate (DG).","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"46 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86006916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fabrication and evaluation of heavily P-doped Si quantum dot and back-gate induced Si quantum dot 重掺磷硅量子点和反向感应硅量子点的制备与评价
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243288
J. Kamioka, T. Kodera, K. Horibe, Y. Kawano, S. Oda
{"title":"Fabrication and evaluation of heavily P-doped Si quantum dot and back-gate induced Si quantum dot","authors":"J. Kamioka, T. Kodera, K. Horibe, Y. Kawano, S. Oda","doi":"10.1109/SNW.2012.6243288","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243288","url":null,"abstract":"We realized lithographically-defined electrically-tunable silicon quantum dot (QD) and charge sensor. Two types of device were fabricated and measured. One is heavily P-doped, and the other is back gate (BG)-induced undoped QD device. I-V characteristic of QD and charge sensor was clearly observed in both devices. Then, we estimate capacitance between the charge sensor and QD or two side gates (SGs) from the measurement and the simulation, and compared two devices in terms of their charging energy.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"50 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84854248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport in graphene on boron nitride 石墨烯在氮化硼上的传输
2012 IEEE Silicon Nanoelectronics Workshop (SNW) Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243327
D. Ferry
{"title":"Transport in graphene on boron nitride","authors":"D. Ferry","doi":"10.1109/SNW.2012.6243327","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243327","url":null,"abstract":"Graphene has become of great interest in recent years for its unique band structure and prospective importance in both microwave and logic devices. Recently, the use of a boron nitride layer between the graphene and the silicon dioxide substrate has shown enhanced mobilities due to displacing the disorder charge, typical on the oxide, further from the graphene material. On the other hand, like the oxide, boron nitride has polar optical modes which can interact with the carriers in graphene to lower their mobility. We have used an ensemble Monte Carlo technique to study the transport in graphene on a boron nitride layer. Scattering by the intrinsic phonons of graphene, as well as by the flexural modes of the rippled layer, and the remote polar mode of boron nitride has been included. The flexural modes are described by the model of Castro et al. While the EMC uses the simple Dirac band structure, coupling constants for the intrinsic phonon modes are taken by fitting to scattering rates determined from first-principles calculations. We find that, at low temperatures, the mobility is dominated primarily by the intrinsic graphene phonons and the flexural modes. This arises as the interfacial polar mode of boron nitride lies at an energy of 200 meV, which is largely too high to interact well with the majority of the carriers in graphene. On the other hand, at room temperature, the mobility begins to be dominated by the remote polar mode of the boron nitride. Nevertheless, the prospects of reaching a high velocity, needed for device performance particularly at microwave frequencies, remains very good.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"88 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86338211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信