Physical model for Random Telegraph Noise amplitudes and implications

R. Southwick, K. Cheung, J. Campbell, S. Drozdov, J. Ryan, J. Suehle, A. Oates
{"title":"Physical model for Random Telegraph Noise amplitudes and implications","authors":"R. Southwick, K. Cheung, J. Campbell, S. Drozdov, J. Ryan, J. Suehle, A. Oates","doi":"10.1109/SNW.2012.6243296","DOIUrl":null,"url":null,"abstract":"Random Telegraph Noise (RTN) has been shown to surpass random dopant fluctuations as a cause for decananometer device variability, through the measurement of a large number of ultra-scaled devices [1]. The most worrisome aspect of RTN is the tail of the amplitude distribution - the limiting cases that are rare but nevertheless wreak havoc on circuit yield and reliability. Since one cannot realistically measure enough devices to imitate a large circuit, a physics-based quantitative model is urgently needed to replace the brute force approach. Recently we introduced a physical model for RTN [2-3] but it contains a serious error. In this paper, we developed and experimentally verified a new model that provides a physical understanding of RTN amplitude. By providing a quantitative link to device parameters, it points the way to control RTN in decananometer devices.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Random Telegraph Noise (RTN) has been shown to surpass random dopant fluctuations as a cause for decananometer device variability, through the measurement of a large number of ultra-scaled devices [1]. The most worrisome aspect of RTN is the tail of the amplitude distribution - the limiting cases that are rare but nevertheless wreak havoc on circuit yield and reliability. Since one cannot realistically measure enough devices to imitate a large circuit, a physics-based quantitative model is urgently needed to replace the brute force approach. Recently we introduced a physical model for RTN [2-3] but it contains a serious error. In this paper, we developed and experimentally verified a new model that provides a physical understanding of RTN amplitude. By providing a quantitative link to device parameters, it points the way to control RTN in decananometer devices.
随机电报噪声振幅的物理模型及其意义
通过对大量超大尺寸器件的测量,随机电报噪声(Random Telegraph Noise, RTN)已被证明超越随机掺杂剂波动,成为decananometer器件可变性的原因[1]。RTN最令人担忧的方面是振幅分布的尾部——这种极限情况很少见,但却对电路的良率和可靠性造成了严重破坏。由于无法实际测量足够的设备来模拟大型电路,因此迫切需要基于物理的定量模型来取代蛮力方法。最近我们为RTN引入了一个物理模型[2-3],但它包含一个严重的错误。在本文中,我们开发并实验验证了一个新的模型,该模型提供了对RTN振幅的物理理解。通过提供与器件参数的定量联系,它指出了在decanometer器件中控制RTN的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信