Journal of Computer-Aided Molecular Design最新文献

筛选
英文 中文
PoseEdit: enhanced ligand binding mode communication by interactive 2D diagrams PoseEdit:通过交互式二维图增强配体结合模式通信
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-07-29 DOI: 10.1007/s10822-023-00522-4
Konrad Diedrich, Bennet Krause, Ole Berg, Matthias Rarey
{"title":"PoseEdit: enhanced ligand binding mode communication by interactive 2D diagrams","authors":"Konrad Diedrich,&nbsp;Bennet Krause,&nbsp;Ole Berg,&nbsp;Matthias Rarey","doi":"10.1007/s10822-023-00522-4","DOIUrl":"10.1007/s10822-023-00522-4","url":null,"abstract":"<div><p>In this article, we present PoseEdit, a new, interactive frontend of the popular pose visualization tool PoseView. PoseEdit automatically produces high-quality 2D diagrams of intermolecular interactions in 3D binding sites calculated from ligands in complex with protein, DNA, and RNA. The PoseView diagrams have been improved in several aspects, most notably in their interactivity. Thanks to the easy-to-use 2D editor of PoseEdit, the diagrams are extensively editable and extendible by the user, can be merged with other diagrams, and even be created from scratch. A large variety of graphical objects in the diagram can be moved, rotated, selected and highlighted, mirrored, removed, or even newly added. Furthermore, PoseEdit enables a synchronized 2D-3D view of macromolecule-ligand complexes simplifying the analysis of structural features and interactions. The representation of individual diagram objects regarding their visualized chemical properties, like stereochemistry, and general graphical styles, like the color of interactions, can additionally be edited. The primary objective of PoseEdit is to support scientists with an enhanced way to communicate ligand binding mode information through graphical 2D representations optimized with the scientist’s input in accordance with objective criteria and individual needs. PoseEdit is freely available on the Proteins<i>Plus</i> web server (https://proteins.plus).</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 10","pages":"491 - 503"},"PeriodicalIF":3.5,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00522-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5117959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function 利用以骨架为中心的统计能量函数探索蛋白质肽配体的结合位置和骨架构象
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-07-27 DOI: 10.1007/s10822-023-00518-0
Lu Zhang, Haiyan Liu
{"title":"Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function","authors":"Lu Zhang,&nbsp;Haiyan Liu","doi":"10.1007/s10822-023-00518-0","DOIUrl":"10.1007/s10822-023-00518-0","url":null,"abstract":"<div><p>When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 10","pages":"463 - 478"},"PeriodicalIF":3.5,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5048225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation 吡唑啉酮增强粘菌素对表达mcr-1的大肠杆菌的抑菌作用:体外和体外研究
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-07-24 DOI: 10.1007/s10822-023-00519-z
Chonnikan Hanpaibool, Puey Ounjai, Sirilata Yotphan, Adrian J. Mulholland, James Spencer, Natharin Ngamwongsatit, Thanyada Rungrotmongkol
{"title":"Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation","authors":"Chonnikan Hanpaibool,&nbsp;Puey Ounjai,&nbsp;Sirilata Yotphan,&nbsp;Adrian J. Mulholland,&nbsp;James Spencer,&nbsp;Natharin Ngamwongsatit,&nbsp;Thanyada Rungrotmongkol","doi":"10.1007/s10822-023-00519-z","DOIUrl":"10.1007/s10822-023-00519-z","url":null,"abstract":"<div><p>Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (<i>mcr</i>) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in <i>Escherichia coli</i> expressing <i>mcr-1</i> mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an <i>E. coli</i> strain carrying the <i>mcr-1</i> gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand–protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in <i>E</i>. <i>coli</i> carrying the <i>mcr-1</i> gene, providing a method for the development of novel treatments against colistin-resistant bacteria.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 10","pages":"479 - 489"},"PeriodicalIF":3.5,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4935933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors 修正:评估对接、FEP和MM/GBSA方法对一系列KLK6抑制剂的性能
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-07-22 DOI: 10.1007/s10822-023-00521-5
Wemenes José Lima Silva, Renato Ferreira de Freitas
{"title":"Correction to: Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors","authors":"Wemenes José Lima Silva,&nbsp;Renato Ferreira de Freitas","doi":"10.1007/s10822-023-00521-5","DOIUrl":"10.1007/s10822-023-00521-5","url":null,"abstract":"","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 10","pages":"505 - 505"},"PeriodicalIF":3.5,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4861346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polygalic acid inhibits african swine fever virus polymerase activity: findings from machine learning and in vitro testing 聚没食子酸抑制非洲猪瘟病毒聚合酶活性:来自机器学习和体外测试的发现
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-07-15 DOI: 10.1007/s10822-023-00520-6
Jiwon Choi, Hyundo Lee, Soyoung Cho, Yorim Choi, Thuy X. Pham, Trang T. X. Huynh, Yun-Sook Lim, Soon B. Hwang
{"title":"Polygalic acid inhibits african swine fever virus polymerase activity: findings from machine learning and in vitro testing","authors":"Jiwon Choi,&nbsp;Hyundo Lee,&nbsp;Soyoung Cho,&nbsp;Yorim Choi,&nbsp;Thuy X. Pham,&nbsp;Trang T. X. Huynh,&nbsp;Yun-Sook Lim,&nbsp;Soon B. Hwang","doi":"10.1007/s10822-023-00520-6","DOIUrl":"10.1007/s10822-023-00520-6","url":null,"abstract":"<div><p>African swine fever virus (ASFV), an extremely contagious virus with high mortality rates, causes severe hemorrhagic viral disease in both domestic and wild pigs. Fortunately, ASFV cannot be transmitted from pigs to humans. However, ongoing ASFV outbreaks could have severe economic consequences for global food security. Although ASFV was discovered several years ago, no vaccines or treatments are commercially available yet; therefore, the identification of new anti-ASFV drugs is urgently warranted. Using molecular docking and machine learning, we have previously identified pentagastrin, cangrelor, and fostamatinib as potential antiviral drugs against ASFV. Here, using machine learning combined with docking simulations, we identified natural products with a high affinity for <i>Asfv</i>PolX proteins. We selected five natural products (NPs) that are located close in chemical space to the six known natural flavonoids that possess anti-ASFV activity. Polygalic acid markedly reduced <i>Asfv</i>PolX polymerase activity in a dose-dependent manner. We propose an efficient protocol for identifying NPs as potential antiviral drugs by identifying chemical spaces containing high-affinity binders against ASFV in NP databases.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 9","pages":"453 - 461"},"PeriodicalIF":3.5,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00520-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4615206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADis-QSAR: a machine learning model based on biological activity differences of compounds adi - qsar:基于化合物生物活性差异的机器学习模型
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-06-29 DOI: 10.1007/s10822-023-00517-1
Gyoung Jin Park, Nam Sook Kang
{"title":"ADis-QSAR: a machine learning model based on biological activity differences of compounds","authors":"Gyoung Jin Park,&nbsp;Nam Sook Kang","doi":"10.1007/s10822-023-00517-1","DOIUrl":"10.1007/s10822-023-00517-1","url":null,"abstract":"<div><p>Drug candidates identified by the pharmaceutical industry typically have unique structural characteristics to ensure they interact strongly and specifically with their biological targets. Identifying these characteristics is a key challenge for developing new drugs, and quantitative structure-activity relationship (QSAR) analysis has generally been used to perform this task. QSAR models with good predictive power improve the cost and time efficiencies invested in compound development. Generating these good models depends on how well differences between “active” and “inactive” compound groups can be conveyed to the model to be learned. Efforts to solve this difference issue have been made, including generating a “molecular descriptor” that compressively expresses the structural characteristics of compounds. From the same perspective, we succeeded in developing the Activity Differences-Quantitative Structure-Activity Relationship (ADis-QSAR) model by generating molecular descriptors that more explicitly convey features of the group through a pair system that performs direct connections between active and inactive groups. We used popular machine learning algorithms, such as Support Vector Machine, Random Forest, XGBoost and Multi-Layer Perceptron for model learning and evaluated the model using scores such as accuracy, area under curve, precision and specificity. The results showed that the Support Vector Machine performed better than the others. Notably, the ADis-QSAR model showed significant improvements in meaningful scores such as precision and specificity compared to the baseline model, even in datasets with dissimilar chemical spaces. This model reduces the risk of selecting false positive compounds, improving the efficiency of drug development.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 9","pages":"435 - 451"},"PeriodicalIF":3.5,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5125030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors 评估对接、FEP和MM/GBSA方法对一系列KLK6抑制剂的性能
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-06-28 DOI: 10.1007/s10822-023-00515-3
Wemenes José Lima Silva, Renato Ferreira de Freitas
{"title":"Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors","authors":"Wemenes José Lima Silva,&nbsp;Renato Ferreira de Freitas","doi":"10.1007/s10822-023-00515-3","DOIUrl":"10.1007/s10822-023-00515-3","url":null,"abstract":"<div><p>Kallikrein 6 (KLK6) is an attractive drug target for the treatment of neurological diseases and for various cancers. Herein, we explore the accuracy and efficiency of different computational methods and protocols to predict the free energy of binding (ΔG<sub>bind</sub>) for a series of 49 inhibitors of KLK6. We found that the performance of the methods varied strongly with the tested system. For only one of the three KLK6 datasets, the docking scores obtained with rDock were in good agreement (R<sup>2</sup> ≥ 0.5) with experimental values of ΔG<sub>bind</sub>. A similar result was obtained with MM/GBSA (using the ff14SB force field) calculations based on single minimized structures. Improved binding affinity predictions were obtained with the free energy perturbation (FEP) method, with an overall MUE and RMSE of 0.53 and 0.68 kcal/mol, respectively. Furthermore, in a simulation of a real-world drug discovery project, FEP was able to rank the most potent compounds at the top of the list. These results indicate that FEP can be a promising tool for the structure-based optimization of KLK6 inhibitors.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 9","pages":"407 - 418"},"PeriodicalIF":3.5,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00515-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5086055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COSMO-RS blind prediction of distribution coefficients and aqueous pKa values from the SAMPL8 challenge COSMO-RS盲预测SAMPL8挑战的分布系数和水溶液pKa值
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-06-27 DOI: 10.1007/s10822-023-00514-4
Michael Diedenhofen, Frank Eckert, Selman Terzi
{"title":"COSMO-RS blind prediction of distribution coefficients and aqueous pKa values from the SAMPL8 challenge","authors":"Michael Diedenhofen,&nbsp;Frank Eckert,&nbsp;Selman Terzi","doi":"10.1007/s10822-023-00514-4","DOIUrl":"10.1007/s10822-023-00514-4","url":null,"abstract":"<div><p>The SAMPL8 blind prediction challenge, which addresses the acid/base dissociation constants (pKa) and the distribution coefficients (logD), was addressed by the Conductor like Screening Model for Realistic Solvation (COSMO-RS). Using the COSMOtherm implementation of COSMO-RS together with a rigorous conformational sampling, yielded logD predictions with a root mean square deviation (RMSD) of 1.36 log units over all 11 compounds and seven bi-phasic systems of the data set, which was the most accurate of all contest submissions (logD).</p><p>For the SAMPL8 pKa competition, participants were asked to report the standard state free energies of all microstates, which were then used to calculate the macroscopic pKa. We have used COSMO-RS based linear free energy fit models to calculate the requested energies. The assignment of the calculated and experimental pKa values was made on the basis of the popular transitions, i.e. the transition hat was predicted by the majority of the submissions. With this assignment and a model that covers both, pKa and base pKa, we achieved an RMSD of 3.44 log units (18 pKa values of 14 molecules), which is the second place of the six ranked submissions. By changing to an assignment that is based on the experimental transition curves, the RMSD reduces to 1.65. In addition to the ranked contribution, we submitted two more data sets, one for the standard pKa model and one or the standard base pKa model of COSMOtherm. Using the experiment based assignment with the predictions of the two sets we received a RMSD of 1.42 log units (25 pKa values of 20 molecules). The deviation mainly arises from a single outlier compound, the omission of which leads to an RMSD of 0.89 log units.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 8","pages":"395 - 405"},"PeriodicalIF":3.5,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5482620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment 六聚假蛋白-4抗细菌膜模拟环境的机制研究
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-06-27 DOI: 10.1007/s10822-023-00516-2
A. S. Vinutha, R. Rajasekaran
{"title":"Insight on the mechanism of hexameric Pseudin-4 against bacterial membrane-mimetic environment","authors":"A. S. Vinutha,&nbsp;R. Rajasekaran","doi":"10.1007/s10822-023-00516-2","DOIUrl":"10.1007/s10822-023-00516-2","url":null,"abstract":"<div><p>As an alternative to antibiotics, Antimicrobial Peptides (AMPs) possess unique properties including cationic, amphipathic and their abundance in nature, but the exact characteristics of AMPs against bacterial membranes are still undetermined. To estimate the structural stability and functional activity of AMPs, the Pseudin AMPs (Pse-1, Pse-2, Pse-3, and Pse-4) from Hylid frog species, <i>Pseudis paradoxa</i>, an abundantly discovered source for AMPs were examined. We studied the intra-peptide interactions and thermal denaturation stability of peptides, as well as the geometrical parameters and secondary structure profiles of their conformational trajectories. On this basis, the peptides were screened out and the highly stable peptide, Pse-4 was subjected to membrane simulation in order to observe the changes in membrane curvature formed by Pse-4 insertion. Monomeric Pse-4 was found to initiate the membrane disruption; however, a stable multimeric form of Pse-4 might be competent to counterbalance the helix-coil transition and to resist the hydrophobic membrane environment. Eventually, hexameric Pse-4 on membrane simulation exhibited the hydrogen bond formation with <i>E. coli</i> bacterial membrane and thereby, leading to the formation of membrane spanning pore that allowed the entry of excess water molecules into the membrane shell, thus causing membrane deformation. Our report points out the mechanism of Pse-4 peptide against the bacterial membrane for the first time. Relatively, Pse-4 works on the barrel stave model against <i>E. coli</i> bacterial membrane; hence it might act as a good therapeutic scaffold in the treatment of multi-drug resistant bacterial strains.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 9","pages":"419 - 434"},"PeriodicalIF":3.5,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5482626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES 使用增强smile的双环强化学习,更快,更多样化的从头分子优化
IF 3.5 3区 生物学
Journal of Computer-Aided Molecular Design Pub Date : 2023-06-17 DOI: 10.1007/s10822-023-00512-6
Esben Jannik Bjerrum, Christian Margreitter, Thomas Blaschke, Simona Kolarova, Raquel López-Ríos de Castro
{"title":"Faster and more diverse de novo molecular optimization with double-loop reinforcement learning using augmented SMILES","authors":"Esben Jannik Bjerrum,&nbsp;Christian Margreitter,&nbsp;Thomas Blaschke,&nbsp;Simona Kolarova,&nbsp;Raquel López-Ríos de Castro","doi":"10.1007/s10822-023-00512-6","DOIUrl":"10.1007/s10822-023-00512-6","url":null,"abstract":"<div><p>Using generative deep learning models and reinforcement learning together can effectively generate new molecules with desired properties. By employing a multi-objective scoring function, thousands of high-scoring molecules can be generated, making this approach useful for drug discovery and material science. However, the application of these methods can be hindered by computationally expensive or time-consuming scoring procedures, particularly when a large number of function calls are required as feedback in the reinforcement learning optimization. Here, we propose the use of double-loop reinforcement learning with simplified molecular line entry system (SMILES) augmentation to improve the efficiency and speed of the optimization. By adding an inner loop that augments the generated SMILES strings to non-canonical SMILES for use in additional reinforcement learning rounds, we can both reuse the scoring calculations on the molecular level, thereby speeding up the learning process, as well as offer additional protection against mode collapse. We find that employing between 5 and 10 augmentation repetitions is optimal for the scoring functions tested and is further associated with an increased diversity in the generated compounds, improved reproducibility of the sampling runs and the generation of molecules of higher similarity to known ligands.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"37 8","pages":"373 - 394"},"PeriodicalIF":3.5,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10822-023-00512-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4690096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信