Keya Ghosh, Ashok Mandi, Nandagopal Bar, Arindam Ray, Dhrubajyoti Mondal, Gourab Kanti Das, Pranesh Chowdhury
{"title":"Synthesis of a new Schiff base probe: Crystal structure, spectral properties, understanding and prospect","authors":"Keya Ghosh, Ashok Mandi, Nandagopal Bar, Arindam Ray, Dhrubajyoti Mondal, Gourab Kanti Das, Pranesh Chowdhury","doi":"10.1007/s12039-024-02305-2","DOIUrl":"10.1007/s12039-024-02305-2","url":null,"abstract":"<div><p>Among the various Schiff bases, those containing 2,4-diaminotoluene as a primary amine and 2-hydroxy-4-methoxybenzaldehyde as a carbonyl compound are new and deserve special attention because their logical spectral properties find application in analytical chemistry as a smart probe. The new Schiff base has been synthesized to its pure crystalline form. It is characterized by single-crystal XRD, FT-IR, NMR, TGA, and mass spectrometry. We have studied the spectral properties of the Schiff base and its aluminium adduct by UV-vis and fluorescence spectroscopy and rationalized them by computational analysis. The Job's plot and mass spectrometry indicate the 1:1 binding ratio between the ligand and the Al<sup>3+</sup> ion. The suitable binding constant value (8.329×10<sup>3</sup> M<sup>–1</sup>) leads to the development of Al<sup>3+ </sup>sensation by the Schiff base. The sensor has an appreciably low limit of detection value of 7.638×10<sup>–9</sup>(M), i.e., 0.00163 ppm for Al<sup>3+</sup>. The logical behaviour of the probe (NAND-type molecular logic gate with two inputs, Al<sup>3+</sup> and EDTA) leads to the development of a renewable aluminium testing kit.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer synthesis and characterization using ring-opening polymerization, free-radical polymerization, and “click” chemistry techniques","authors":"Bedrettin Savaş, Temel Öztürk","doi":"10.1007/s12039-024-02296-0","DOIUrl":"10.1007/s12039-024-02296-0","url":null,"abstract":"<div><p>The synthesis of poly(4-vinylbenzyl-g-<i>β</i>-butyrolactone) (poly(VB-g-BL)) graft copolymer was carried out by “click” chemistry of terminal azido poly(4-vinylbenzyl chloride) (PVB-N<sub>3</sub>) and terminal propargyl poly(<i>β</i>-butyrolactone) (<i>β</i>-BL-propargyl). For this purpose, poly(4-vinylbenzyl chloride) (poly-4-VBC) was obtained using 4-vinylbenzyl chloride and 2,2′-azobis(2-methylpropionitrile) by free-radical polymerization. PVB-N<sub>3</sub> was synthesized using sodium azide and poly-4-VBC. <i>β</i>-BL-propargyl was obtained by the reaction of <i>β</i>-butyrolactone monomer with propargyl alcohol via ring-opening polymerization. The graft copolymer was also synthesized via “click” chemistry, employing PVB-N<sub>3</sub> and <i>β</i>-BL-propargyl. The products were thoroughly characterized by GPC, FT-IR, SEM, and <sup>1</sup>H-NMR. DSC and TGA were used to track the graft copolymer’s thermal characteristics. Thermal and spectroscopic measurements verified that the reactions were effectively completed.</p><h3>Graphical abstract</h3><p>Poly(4-vinylbenzyl chloride) was obtained by free-radical polymerization. Terminal azido poly(4-vinylbenzyl chloride) was synthesized using sodium azide and poly(4-vinylbenzyl chloride). Terminal propargyl poly(β-butyrolactone) was obtained by β-butyrolactone and propargyl alcohol via ring-opening polymerization. Poly(4-vinylbenzyl-g-β-butyrolactone) graft copolymer was synthesized by “click” chemistry. Thermal and spectroscopic measurements verified that the reactions were completed.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stereodynamic origin of mode selectivity in the (textbf{NH}_{3}) (varvec{+}) F (varvec{longrightarrow}) (textbf{NH}_{2}) (varvec{+}) HF reaction","authors":"Aditya Barman, Amit Kumar, Pradeep Kumar","doi":"10.1007/s12039-024-02306-1","DOIUrl":"10.1007/s12039-024-02306-1","url":null,"abstract":"<p>The hydrogen abstraction of ammonia by fluorine radical exhibits a peculiar mode selectivity as the ammonia inversion mode promotes the reaction more efficiently than the stretching mode. Although there were attempts to explain it in the literature, a precise understanding of the mode selectivity of this reaction is missing. In this work, using on-the-fly semi-classical trajectory calculation and quantum chemical computation, we have shown that the peculiar mode selectivity of the title reaction has a stereodynamic origin.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface hydrophobicity induced electrochemical nitrogen reduction reaction: A substrate-dependent case study on Cu foam versus Cu foil","authors":"Ashmita Biswas, Ramendra Sundar Dey","doi":"10.1007/s12039-024-02299-x","DOIUrl":"10.1007/s12039-024-02299-x","url":null,"abstract":"<div><p>Hydrophobic surface modification is an emerging concept for electrochemical gas-phase reactions like nitrogen reduction reaction to ammonia as the restricted surface wettability helps to surpass the competitive hydrogen evolution reaction. However, the extensive studies on this strategy lack a discussion on the influence of substrates on the stability of the hydrophobic coating. The present work summarizes a case study on the substrate-dependent electrochemical behaviour of the alkanethiol-coated flattened Cu foil and porous dendritic Cu foam surfaces. NRR studies reveal that the porous dendritic architecture with electrified tips and the hydrophobic coating-induced gas diffusion layer proved to be beneficial for NRR activity in Cu foam-SH. However, for a prolonged experimental hour, the flattened surface of the Cu foil could better hold the hydrophobic coating. The results corresponded with water contact angle as well as double layer capacitance measurements and a detailed X-ray photoelectron spectroscopy study. It is supposed that the prolonged exposure to applied potential alters the polarization of the Cu dendritic tips and weakens the Cu–S bond, loosening the alkanethiol layer over Cu foam.</p><h3>Graphical abstract</h3><p>Hydrophobic Cu substrates facilitate electrochemical nitrogen reduction reactions owing to the better N<sub>2</sub> diffusion and trapping underneath the hydrophobic coating. While the NRR activity gets accelerated at the electrified dendritic tips of Cu foam, the steady hydrophobic layer over the flattened Cu foil surface ascertains long-term use of the material.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zein protein binder coupled with chitosan-derived carbon for polysulphide trapping in Li–S battery","authors":"Swati Panigrahi, Kothandaraman Ramanujam","doi":"10.1007/s12039-024-02301-6","DOIUrl":"10.1007/s12039-024-02301-6","url":null,"abstract":"<div><p>For relatively newer developments such as Li–S battery, polysulphide shuttle effect, volume expansion, and low conductivity of sulphur have been the main hurdles in the path towards its commercialisation. To get rid of the polysulphide shuttle effect, we looked at the binder material of the cathode component. An attempt at keeping up with the capacity while making components sustainable led us to explore a protein-based biopolymer, zein. The carbonyl-rich binder helped to glue the components together while the long chain of amino acids aided in preserving the performance. The UV-visible spectroscopy technique verified the adsorption of polysulphides by zein and activated carbon. The carbon host used for this study possessed a high Bruner Emmet Teller (BET) surface area of around 1900 m<sup>2</sup> g<sup>–1</sup>, which helped to load higher amounts of sulphur, as revealed by thermogravimetric analysis. Owing to a porous host, the volume expansion effect could also be buffered to maintain the performance as observed through stability studies. The cycling study of zein binder containing cathode showed an enhanced performance of around 100 mAh g<sup>–1</sup> throughout the 250 cycles compared to the PVDF binder containing cathode.</p></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digvijay Badghaiya, Jigisha K Parikh, Parimal A Parikh
{"title":"Ethanol upgrading via alkali-exchanged KL-zeolite: Unravelling catalytic behavior, reaction mechanism and thermodynamic effects","authors":"Digvijay Badghaiya, Jigisha K Parikh, Parimal A Parikh","doi":"10.1007/s12039-024-02290-6","DOIUrl":"10.1007/s12039-024-02290-6","url":null,"abstract":"<div><p>Catalysts based on KL-zeolite exchanged with alkali metal ions (Rb<sup>+</sup> and Cs<sup>+</sup>) were studied for conversion of ethanol to oligomerization through the Guerbet reaction pathway. The catalysts were characterized by techniques such as ICP-AES, FESEM-EDX, N<sub>2</sub>-adsorption-desorption, and CO<sub>2</sub>-TPD to assess their physio-chemical properties. Effects of operating parameters, namely reaction temperature, pressure, and feed flow rate on catalytic activity for the conversion of ethanol to<i> n</i>-butanol were examined. Furthermore, influence of alkali metal loading on KL-zeolite was explored. Substantial ethanol conversion (42.6%) and n-butanol yield (13.9%) were achieved at 450°C and 30 kg/cm<sup>2</sup> after a 6 h reaction employing Cs-KL zeolite catalyst. Observations indicated that the butanol selectivity is highest among the reported literature. Additionally, this catalyst has exhibited low deactivation rate attributable to coke formation. Spent catalysts were studied for XRD and DTG/TGA analysis. Present investigation establishes that KL-zeolite, particularly when modified with alkali metal ions, proves to be an efficient catalyst for the Guerbet conversion of ethanol, highlighting its potential for ethanol upgrading.</p></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning the oxygen electrocatalytic performance of metal-doped graphitic carbon nitride for the development of zinc-air battery","authors":"Arpan Samanta, Mopidevi Manikanta Kumar, Santanu Ghora, Arnab Ghatak, Somnath Bhattacharya, Vivek Kumar, C Retna Raj","doi":"10.1007/s12039-024-02295-1","DOIUrl":"10.1007/s12039-024-02295-1","url":null,"abstract":"<div><p>Efficient and durable non-precious cathode catalysts are needed at this hour for the development of fuel cells and metal-air batteries. The instability of one of the well-studied non-precious catalysts, Fe–N–C, in acidic electrolytes and its inferior bifunctional electrocatalytic activity in alkaline electrolytes, shifts the attention towards other electrocatalysts based on Ni and Co. Herein, we demonstrate the synthesis of nitrogen and transition metal (M=Co, Ni) co-doped mesoporous carbon (Co/Ni–N–mC) catalysts for bifunctional oxygen electrocatalysis. The synthetic approach involves the thermal annealing-induced transformation of the graphitic carbon nitride (g–C<sub>3</sub>N<sub>4</sub>) to nitrogen-doped graphitic mesoporous carbon (N–mC). The Co–N–mC catalyst has superior bifunctional oxygen electrocatalytic activity. It promotes the 4-electron pathway for the reduction of oxygen to water and is highly durable in alkaline electrolyte. The bifunctional activity is evaluated in terms of the potential gap (Δ<i>E</i>). The small Δ<i>E</i> for Co–N–mC makes it suitable for metal-air batteries. The rechargeable zinc-air battery is fabricated with Co–N–mC and it delivers a specific capacity of 718 mAh g<sup>−1</sup><sub>Zn</sub> and a power density of 122.2 mW/cm<sup>2</sup> with long-time charge-discharge cycling stability for 100 h. The synergistic effect between metal nanoparticles and nitrogen-doped carbon matrix, as well as the post-synthetic surface engineering-induced morphological changes, account for the enhanced activity.</p><h3>Graphical abstract</h3><p>The transformation of supramolecular aggregate-derived metal-doped graphitic carbon nitride to electrocatalytically highly active nitrogen-doped mesoporous carbon and its electrocatalytic performance for aqueous rechargeable zinc-air battery is demonstrated.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding of CO oxidation reaction by molecular and atomic oxygen on Cu19 cluster using the density functional theory","authors":"ANJANI NANDAN PANDEY, RAMAN K. SINGH","doi":"10.1007/s12039-024-02291-5","DOIUrl":"10.1007/s12039-024-02291-5","url":null,"abstract":"<div><p>In this work, we present the CO oxidation by molecular and atomic oxygen on the Cu<sub>3</sub> site of the Cu<sub>19</sub> cluster employing the density functional theory (DFT)-PW91PW91/[LANL2DZ, 6-31G(d)] level. The computed results demonstrate that the O atom, O<sub>2</sub>, and CO molecule adsorptions on the copper cluster are all chemical. For the CO oxidation by O<sub>2</sub> molecules that leads to the formation of C–O bonds and the dissociation of O–O bonds, the Langmuir–Hinshelwood (LH) mechanism is preferred. On the other hand, the Eley–Rideal (ER) mechanism is slightly favored by the oxidation of CO by atomic oxygen. According to the intrinsic reaction coordinate (IRC) calculation, the activation energy for CO oxidation is 4.02 kcal/mol for molecular oxygen and 3.17 kcal/mol for atomic oxygen. Therefore, molecular and atomic oxygen are very reactive for CO oxidation on the Cu<sub>19</sub> cluster. To check the applicability of the global hardness response (GHR) profile satisfying the maximum hardness principle along the IRC in the metal cluster reactions, the GHR profile for the oxidation reaction of CO with molecular oxygen and atomic oxygen was computed. The results indicate that this meets the principle of maximum hardness, effectively showcasing the use of DFT methods to analyze the global hardness profile using frontier molecular orbital energy in the context of metal cluster reaction pathways.</p><h3>Graphical abstract</h3><p>The CO oxidation by molecular and atomic oxygen on the Cu<sub>3</sub> site of the Cu<sub>19</sub> cluster employing the density functional theory has been studied. The results show that the CO oxidation by atomic oxygen slightly favors the Eley–Rideal (ER) mechanism, while the CO oxidation by molecular oxygen prefers the Langmuir–Hinshelwood (LH) mechanism. Both molecular and atomic oxygen are very reactive for CO oxidation. Furthermore, the global hardness profile along the intrinsic reaction coordinate follows the maximum hardness principle.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Revati R. Nagarkar, Rucha R. Purandare, Mohini S. Gupte, Madhuri S. Kulkarni
{"title":"Green heterogeneous nickel–chromium oxide catalyst for solvent-free, room-temperature Knoevenagel condensation reaction","authors":"Revati R. Nagarkar, Rucha R. Purandare, Mohini S. Gupte, Madhuri S. Kulkarni","doi":"10.1007/s12039-024-02292-4","DOIUrl":"10.1007/s12039-024-02292-4","url":null,"abstract":"<div><p>This paper discusses synthesizing green, recyclable, heterogeneous nickel–chromium oxide (NiCr<sub>2</sub>O<sub>4</sub>) catalyst and its application in solvent-free, room-temperature Knoevenagel condensation reaction. Nickel–chromium oxides (Ni–Cr oxides) were prepared using the coprecipitation method in various proportions, such as 2:1, 1:1, and 1:2 ratios. The synthesized catalysts were characterized using X-ray diffraction, SEM-EDX, and BET-surface area analysis. The synthesized catalysts were employed as heterogeneous catalysts in the Knoevenagel condensation model reaction of 4-chlorobenzaldehyde and malononitrile under room temperature, solvent-free grinding reaction conditions, and the results were compared. This paper will discuss the most suitable catalyst and its possible mechanism.</p></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-principles DFT study on the interaction of non-metal oxides with water cluster","authors":"Prasanna","doi":"10.1007/s12039-024-02297-z","DOIUrl":"10.1007/s12039-024-02297-z","url":null,"abstract":"<div><p>A study on the interaction of non-metal oxide with water is very critical in order to understand the formation of acidic species and polyanions. It is very easy to understand the interaction of non-metal oxides with water by employing density functional theory (DFT). First-principles DFT is used to simulate the water cluster with three-dimensional continuums by defining a supercell with dimensions <span>(13.49 times 12.696 times 3.174)</span> Å<sup>3</sup>. The geometry-optimized non-metal oxides are placed on the water clusters and allow for interactions. The geometry and stability of the chemical species formed are discussed and the results are correlated with the experiments. The phonon calculations are also carried out to confirm the chemical species formed and match well with the literature.</p><h3>Graphical abstract</h3><p>First-principles DFT is used to simulate the water cluster with three-dimensional continuums by defining a supercell with dimensions <span>(13.49 times 12.696 times 3.174 )</span> Å<sup>3</sup>. Interactions of water cluster with non-metal oxides furnished H<sub>2</sub>CO<sub>3</sub>, <span>({text{HSO}}_{3}^{-})</span>, <span>({text{SO}}_{4}^{2-})</span>, and <span>({text{NO}}_{3}^{-})</span> for CO<sub>2</sub>, SO<sub>2</sub>, SO<sub>3</sub>, and <span>({{text{N}}_{2}text{O}}_{5})</span> respectively</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12039-024-02297-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}