Fatma Abdellaoui, Amel Haouas, Awatef M Samud, Amal K Belaid, Hanan Al-Ghulikah, Yousef A Taher, Taha Guerfel, Zakaria M Bannur, Melek Hajji
{"title":"Unravelling the structure and reactivity of N,O-heterocycles: a multifaceted quantum chemical approach using a benzoxazole derivative as a case study","authors":"Fatma Abdellaoui, Amel Haouas, Awatef M Samud, Amal K Belaid, Hanan Al-Ghulikah, Yousef A Taher, Taha Guerfel, Zakaria M Bannur, Melek Hajji","doi":"10.1007/s12039-024-02314-1","DOIUrl":"10.1007/s12039-024-02314-1","url":null,"abstract":"<div><p>Quantum chemistry provides valuable insights into the structure and reactivity of heterocyclic organic compounds, facilitating the rational design of novel molecules with targeted functionalities. In this paper, structural features and chemical properties of 2-(2-phenyl-1,3-benzoxazol-7-yl)benzaldehyde, a benzoxazole-based heterocycle, were investigated. This multifaceted study combines crystallographic and quantum chemical methods to elucidate molecular geometry, crystal packing, and chemical reactivity of mono and dimeric forms. A rich network of intermolecular interactions, including nonclassical hydrogen bonds (C–H···O and C–H···N), <i>π</i>-stacking, and a unique C=O···<i>π</i>(ring) interaction, were found to govern the solid-state structure. Multi-approach quantum mechanics analysis using dispersion-corrected DFT (ωB97X-D/aug-cc-pVTZ) revealed the electronic features, energetics, and nature of these interactions. Furthermore, Conceptual DFT identified the molecule as a moderate electrophile and strong nucleophile in polar organic reactions, while Parr functions pinpointed favourable sites for electrophilic and nucleophilic attacks.</p><h3>Graphical abstract</h3><p>Quantum chemistry provides valuable insights into the structure and reactivity of heterocyclic organic compounds, facilitating the rational design of novel molecules with targeted functionalities. In this paper, a benzoxazole-based heterocycle was computationally investigated using dispersion-corrected density functional theory. The focus was on noncovalent interactions and chemical reactivity in both mono and dimeric forms. This work not only introduces the molecule for future study, but also emphasizes the capability of used theoretical approaches in elucidating structure and reactivity within heterocyclic compounds.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Competitive role of aryldiazonium cation and aryldiazene radical in PdIV catalysed C–C coupling reactions: DFT insights","authors":"Gopal Sabapathi, Rajadurai Vijay Solomon, Ponnambalam Venuvanalingam","doi":"10.1007/s12039-024-02308-z","DOIUrl":"10.1007/s12039-024-02308-z","url":null,"abstract":"<div><p>Aryldiazonium cation undergoes C–C coupling reactions through instant formation of Pd<sup>IV</sup> aryldiazenido complex with the precursor [(Tp*)Pd<sup>II</sup>Me<sub>2</sub>]<sup>-</sup> complex (Tp*<span>(=)</span>tris(3,5-dimethyl-1-pyrazolyl)borate). This Pd<sup>IV</sup> arylazenido complex is the first high-valent Pd<sup>IV</sup> complex in C–C coupling reactions which can decompose further into aryldiazonium cation and Pd<sup>II</sup> complex and follow a series of reactions via a two-electron or ionic path. Alternatively, it can decompose into aryl radical (<b>AniR</b>) and follow one-electron or radical path forming the C–C coupled product. The possibility of these two mechanisms were proposed by Fekl and co-workers [<i>Dalton Trans</i>. <b>2017</b>, <i>46</i>, 4004–4008] and in this work, DFT calculations have been performed to clarify the mechanism as well as to probe the competitive role of aryldiazonium cation and aryl radical (<b>AniR</b>) in this reaction. In the two-electron pathway the process follows sequentially oxidative addition, transmetallation, oxidative addition and dinitrogen extrusion, and reductive elimination to form the C–C coupled product 4,4′-dimethoxybiphenyl (<b>P1</b>) and 4-methoxy toluene (<b>P3</b>). In the one-electron or radical pathway, 4-methoxyphenyl radicals are formed directly and they recombine to give <b>P1</b>. There are other products including [(Tp*)Pd<sup>IV</sup>Me<sub>3</sub>] (<b>P2</b>) and ethane (<b>P4</b>) formed in the reaction. QTAIM calculations reveal that methyl group migrates as a cation in the transmetallation step of the two-electron path. N<sub>2</sub> extrusion passes through a six membered cyclic transition state involving orbital and CH--.<i>π</i> interactions, and reductive elimination passes through a three-membered cyclic transition state. NBO calculations explain the nature of metal-ligand bonding of the species involved in the reaction path. A close inspection of the activation barriers shows the one-electron pathway seems to be favoured over two-electron path because it is low lying and everything becomes irreversible once aryl radical is formed, which quickly undergoes completely irreversible coupling, whereas the first several steps of the two-electron pathway are all reversible. This is in agreement with the experiment and calculations further clarify that the proposed Pd<sup>IV</sup> diaryldiazenido complex is not feasible. Computations thus reveal that aryldiazonium cation starts the reaction by forming [(Tp*)Pd<sup>IV</sup>Me<sub>2</sub>(pmbd)](<b>RC</b>) complex and this complex reacts favourably through aryl radical to form the products.</p><h3>Graphical abstract</h3><p>Aryldiazonium cation readily reacts with the precursor Pd<sup>II</sup> complex to give Pd<sup>IV</sup> aryldiazenido complex and this complex undergoes C–C coupling reaction via radical pathway through aryl radical and forms 4, 4′-dimethoxybiphenyl as a major product, and ethane and 4-metho","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soft ionic atmosphere model for molar conductivity, diffusion coefficient and viscosity in concentrated electrolytes","authors":"Prerna, Rama Kant","doi":"10.1007/s12039-024-02312-3","DOIUrl":"10.1007/s12039-024-02312-3","url":null,"abstract":"<div><p>A novel approach using a soft ionic atmosphere model for the diffusion of ions in concentrated aqueous electrolytes is developed to quantify molar conductivity (<span>(Lambda)</span>), diffusion coefficient (<i>D</i>), and relative viscosity (<span>(eta _{text {r}}^*)</span>). The entropy-driven expansion of the ionic atmosphere in the concentrated electrolyte is characterized through average ion size (<span>({overline{r}}_{text {H}})</span>), ionic screening length for point particle ions (<span>(l_{text {D}})</span>) and a hardness exponent (<span>(gamma)</span>). The radius <span>((l_{text {s}}))</span> of expanded ionic sphere for finite size ions: <span>(l_{text {s}}= l_{text {D}}(1+ ({overline{r}}_{text {H}} /l_{text {D}})^3))</span>. <span>(l_{text {s}})</span> circumvents the limitations of the classical Debye screening length <span>((kappa ^{-1}))</span> in concentrated electrolytes. This model leads to a power law dependence of <span>(Lambda)</span>, <i>D</i> and <span>(eta _{text {r}}^*)</span> on <span>(l_{text {s}})</span>. The extent of the hardness of the ionic atmosphere is characterized by an exponent <span>(gamma)</span>, which is characteristic of an electrolyte solution and lies between 0.2–0.8. The expansion of the ionic sphere increases with concentration causing enhancement of the effective size of ions, resulting in the reduction in diffusion coefficient and molar conductivity. The model captures the experimental molar conductivity data for the fifteen salts in the aqueous medium.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, characterization, molecular docking, antimicrobial and antifungal studies of some novel fused-ring heterocyclic compounds","authors":"Mohammadishfak Sikandar Vahora, Jeena Jyoti Boruah, Jaydeep Lalpara, Siva Prasad Das","doi":"10.1007/s12039-024-02304-3","DOIUrl":"10.1007/s12039-024-02304-3","url":null,"abstract":"<div><p>1,2,3-Triazole, 1,3-imidazole, and 1,3-thiazole are a class of organic heterocyclic compounds with notable applications in a diverse range of biological and pharmacological activities. Herein, we report the synthesis of molecules having these three moieties together. Each of the fused molecule was characterized with elemental analysis, melting point determination, FTIR, NMR, and mass spectrometry. The final fused molecules were screened for <i>in vitro</i> biological activities against a wide spectrum of microorganisms, such as gram-positive bacteria (<i>E. coli, P. aeruginosa, S. aureus, S. phogenes</i>), gram-negative bacteria (S<i>. typhi, V. cholerae, B. subtilis, C. tetani</i>), as well as fungus (<i>C. albicans, A. niger, and A. Clavatus</i>). Each of the compounds showed moderate to good activity which is comparable to commercially available drugs. Further, the molecular docking study on the crystal structure of the 43K ATPase domain of Thermus thermophilus gyrase B (PDB:1KIJ) and on crystal structure of penicillin-binding protein 4 from Staphylococcus aureus COL (PDB:3HUN) revealed strong binding affinities by the synthesized compounds. The ADME study also showed the drug likeliness of the compounds.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asif Ali Qureshi, Sachin Chauhan, K C Kumara Swamy
{"title":"DBU catalyzed (3 + 3) annulation of β′ and δ-acetoxy allenoates with benzo-oxathiin-dioxide and phenylthiazolone: Synthesis of pyrano-oxathiines and pyrano-thiazoles","authors":"Asif Ali Qureshi, Sachin Chauhan, K C Kumara Swamy","doi":"10.1007/s12039-024-02302-5","DOIUrl":"10.1007/s12039-024-02302-5","url":null,"abstract":"<div><p>Annulation reactions involving acetoxy allenoates and enolizable carbonyl substrates under DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) catalysis is described in this paper. Thus DBU catalyzed (3 + 3) annulation reactions of acetoxy allenoates with the bifunctional nucleophiles benzo-oxathiin-dioxide and phenylthiazolone afford fused 4<i>H</i>-pyrans. Both <i>β′</i>-acetoxy allenoates and <i>δ</i>-acetoxy allenoates undergo this annulation to give pyrano-oxathiines or pyrano-thiazoles.</p><h3>Graphical abstract</h3><p>Acetoxy allenoates undergo facile (3 + 3) annulation with benzo-oxathiin-dioxide and phenylthiazolone under DBU catalysis to afford pyrano-oxathiines and pyrano-thiazoles.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vilas Sudrik, Dnyaneshwar Karpe, Vrushali Jadhav, Shamrao Lawande
{"title":"Efficient one-pot process for synthesis of antiviral drug Ganciclovir","authors":"Vilas Sudrik, Dnyaneshwar Karpe, Vrushali Jadhav, Shamrao Lawande","doi":"10.1007/s12039-024-02303-4","DOIUrl":"10.1007/s12039-024-02303-4","url":null,"abstract":"<div><p>A regioselective novel one-pot synthesis of heterocyclic purine derivative antiviral agent Ganciclovir in which initially guanine is treated with acetic anhydride in the presence of iodine (5%) to get diacetyl guanine intermediate, which undergoes <i>in situ N</i>-alkylation with AMDP in presence of catalytic acidic Amberlite IR-120 to get <i>N</i>-alkylated intermediate and finally deacetylation to get pure regioselective Ganciclovir, which is commercially viable and eco-friendly.</p><h3>Graphical abstract</h3><p>We developed one-pot synthesis of antiviral drug Ganciclovir. Initially, Guanine is treated with acetic anhydride and iodine to yield diacetyl guanine <b>3</b>. This intermediate then reacted with AMDP in the presence of acidic Amberlite IR-120 to obtain compound <b>5</b>. Finally, deacetylation yields Ganciclovir <b>1</b>, a commercially viable and eco-friendly process.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ramandeep Kaur, Valiveti Tarun Kumar, Bhavya B Krishna, Thallada Bhaskar
{"title":"Sweet sorghum bagasse pyrolysis: Unravelling thermal degradation via slow and flash pyrolysis investigations","authors":"Ramandeep Kaur, Valiveti Tarun Kumar, Bhavya B Krishna, Thallada Bhaskar","doi":"10.1007/s12039-024-02293-3","DOIUrl":"10.1007/s12039-024-02293-3","url":null,"abstract":"<div><p>This study examines the intricate thermal decomposition of sweet sorghum bagasse, an agricultural residue with significant potential as a renewable energy and biofuel feedstock. Both slow and flash pyrolysis has been conducted over a temperature range of 300–450°C and flash pyrolysis experiments were performed through analytical pyrolysis via Py-GC/MS to comprehensively assess the pyrolysis behaviour and elucidate the biomass degradation pathways. In the slow pyrolysis experiments, sweet sorghum bagasse underwent controlled thermal decomposition at different temperatures (300–450°C), allowing for the investigation of the influence of temperature on product yields and compositions. The evolved volatile compounds and biochar products were analyzed to determine the impact of temperature on biomass degradation. The results revealed that 400°C is the optimum pyrolysis temperature for maximizing valuable bio-oil production with approximately 42 wt.% yields with an overall conversion of 73%. Various characterization techniques were employed to analyze the slow pyrolysis products, including GC-MS, TGA, FTIR, SEM, and XRD. Flash pyrolysis was employed to provide a detailed understanding of the rapid biomass breakdown under extreme heating conditions with a heating rate of 20°C/ms to complement the slow pyrolysis findings. This technique elucidated the primary mechanisms responsible for the degradation of sweet sorghum bagasse, shedding light on the fragmentation patterns and the formation of vital intermediate compounds during flash pyrolysis. These insights into the transient phenomena occurring during pyrolysis provide valuable information for developing efficient and sustainable biomass conversion processes.</p><h3>Graphical abstract</h3><p>The pyrolysis behaviour of sweet sorghum bagasse (SSB) is comprehensively assessed using TGA, slow pyrolysis via lab scale glass tubular reactor and flash pyrolysis via analytical tool Py-GC/MS from 300–450°C. The study reveals the potential use of SSB as a renewable energy and biofuel feedstock.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel organic fluorescent material: synthesis, structures and optical response properties","authors":"Ying-Li Li, Qing-Hui Guo, Dong-En Wu","doi":"10.1007/s12039-024-02298-y","DOIUrl":"10.1007/s12039-024-02298-y","url":null,"abstract":"<div><p>A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Due to the special molecular packing mode in the solid state, J-aggregation, DBPDT displayed red-shifted emission compared with that in dilute solution. In this study, it was found that DBPDT showed aggregation-induced enhanced emission (AIEE) and solvatochromic properties. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly. The optical response characteristics of DBPDT can provide an alternative structure for constructing advanced photoelectric functional materials.</p><h3>Graphical abstract</h3><p>A novel organic fluorescent material, namely 2,6-di([1,1'-biphenyl]-4-yl)-4-(perfluorophenyl)hepta-1,6-diene-1,1,7,7-tetracarbonitrile (DBPDT), has been synthesized and characterized in this study. Assisted by quantum chemistry calculations, optical response properties to external electric field (EEF) were investigated, where it was found that external electric field (EEF) would affect the structures and optical properties of DBPDT distinctly.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-step synthesis of poly(methyl methacrylate-b-ε-caprolactone) block copolymer by simultaneous ATRP and ROP","authors":"Temel Öztürk, Gözde Şenay Demir","doi":"10.1007/s12039-024-02309-y","DOIUrl":"10.1007/s12039-024-02309-y","url":null,"abstract":"<div><p>In this study, the simultaneous synthesis of poly(methyl methacrylate-b-<i>ε</i>-caprolactone) block copolymer was fulfilled by atom transfer radical polymerization of methyl methacrylate and ring-opening polymerization of <i>ε</i>-caprolactone. The synthesis of poly(methyl methacrylate-b-<i>ε</i>-caprolactone) block copolymer was carried out by varying the amount of <i>ε</i>-caprolactone monomer, the amount of methyl methacrylate monomer, the amount of 2-(2-chloroethoxy) ethanol initiator, the amount of toluene solvent, and the polymerization time. The effects of these parameters on the reaction conditions were investigated. Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and static light scattering methods were used for the characterization of the synthesized block copolymer. The surface images of the block copolymer were photographed with a scanning electron microscope instrument. In addition, thermal analysis of the synthesized block copolymer was performed using a thermogravimetric analyzer. These analyses prove the formation of the block copolymer structure.</p><h3>Graphical abstract</h3><p>\u0000The simultaneous synthesis of poly(methyl methacrylate-b-<i>ε</i>-caprolactone) block copolymer was fulfilled by the atom transfer radical polymerization of methyl methacrylate and ring-opening polymerization of <i>ε</i>-caprolactone. The effects of the parameters on the polymerization reaction conditions were investigated. Thermal and spectroscopic measurements prove the formation of the block copolymer structure.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthetic access to thiols: A review","authors":"Aparna Monga, Durgesh Nandini","doi":"10.1007/s12039-024-02300-7","DOIUrl":"10.1007/s12039-024-02300-7","url":null,"abstract":"<div><p>Thiols are ubiquitous compounds found in almost all spheres of life, viz: from simple matter to complex human body. It has widespread applications in diverse domains such as pharmaceuticals, materials, agricultural science, fire science, laser science, catalytic systems, reagent systems, and industry. Although all sulphur compounds encompass one or the other significant properties. However, thiols containing –SH bond are vital as they act as starting substrates for many chemical reactions, are directly present in the biological systems, are abundantly found in natural products, and exhibit profound chemical and biotechnological properties. For example, the –SH group can be easily manipulated to a range of other potent functionalities such as –S–S, –SO<sub>2</sub>Cl<sub>2</sub>, –SOCH<sub>3</sub>, –SOCl<sub>2</sub>, –SONH<sub>2</sub>, –Cl, –NH<sub>2</sub>, –OH, etc. In this view, this review focuses on reporting detailed synthetic methodologies giving access to thiols (–SH). For interesting reading, it has been categorised as follows: (i) <i>via</i> isothiouronium salts; (ii) catalytic preparation of thiols using H<sub>2</sub>S; (iii) using silanethiol/disilathiane; (iv) using thiolacetic acid/thioacetates; (v) from xanthates; (vi) reaction of sodium thiocyanate; (vii) using sodium trithiocarbonates; (viii) using Lawesson’s reagent; (ix) using phosphorus decasulfide; (x) enzymatic method; and the rest of a methods are classified under miscellaneous section.</p><h3>Graphical abstract</h3><p> Synthetic methodologies to form terminal –SH bonds using various reagent systems, <i>viz</i>; (i) isothiouronium salts; (ii) catalytic preparation using H<sub>2</sub>S; (iii) silanethiol/disilathiane; (iv) thiolacetic acid/thioacetates; (v) xanthates; (vi) reaction of sodium thiocyanate; (vii) sodium trithiocarbonates; (viii) Lawesson’s reagent; (ix) phosphorus decasulfide and (x) few enzymatic methods.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}