{"title":"Montmorillonite K10 clay promoted one-pot pseudo-five-component synthesis of 5-cyano-6-(phenylthio)-2-((1-phenylvinyl)imino)-4- aryl(or heteroaryl)-2H-pyran-3-carboxylic acid derivatives and their potential cytotoxic activity","authors":"Pragati Sharma, Pragya Sinha, Nidhi Gupta","doi":"10.1007/s12039-023-02247-1","DOIUrl":"10.1007/s12039-023-02247-1","url":null,"abstract":"<div><p>A facile green accessibility for the synthesis of novel, distinctly substituted 2H-pyran analogues employing montmorillonite K10 clay as a sustainable catalyst via a one-pot multi-component reaction involving various aldehydes, thiophenol and cyanoacetic acid with acetophenone has been developed. The noteworthy features of the current methodology are short reaction time (1.5-2 h), good yields (70-82%), convenient technique, operational simplicity, ease of work-up, and reusability of the catalyst up to two runs, adhering to green chemistry principles. A spectroscopic assessment validated the structure of all the synthesized products. This multi-component one-pot transformation conveniently forms two new C-C bonds, one C-O bond, one C-S bond, and two new rings with all reactants consumed efficiently. Additionally, all synthesized compounds have been evaluated for anti-cancer activity, and two of them were found to be efficacious against human breast cancer cell line, namely, MDA-MB 231.</p><h3>Graphical Abstract</h3><p>A green and efficient method has been developed for synthesizing novel 2H-pyran analogues using montmorillonite K10 clay as a catalyst. The method involves a one-pot multi-component reaction and yields high products (70–82%) while adhering to green chemistry principles. The synthesized compounds have shown efficacy against human breast cancer cell line MDA-MB 231.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of UiO-66-SO3H-Cl as the recyclable multifunctional catalyst for efficient conversion of glucose to 5–Hydroxymethylfurfural","authors":"Molood Falsafin, Kamal Ghani, Arash Shokrollahi","doi":"10.1007/s12039-023-02245-3","DOIUrl":"10.1007/s12039-023-02245-3","url":null,"abstract":"<div><p>5-Hydroxymethylfurfural (HMF), a leading platform combination for altering biomass to diverse biomass-derived chemicals and biofuels, has been engrossed in spacious consideration. In this perusal, a new catalyst modified with sulfonic acid and -Cl functional group UiO-66-SO<sub>3</sub>H-Cl was first used as an efficiently heterogeneous catalyst with the overlapping effect of three functional groups of Lewis acid, Brønsted acid and -Cl group binding site was synthesized to convert glucose to HMF. The Lewis acid site is responsible for the isomerization of glucose to fructose, and the dehydration of fructose to HMF is the responsibility of the Brønsted acid site. The -Cl group facilitates the hydrolysis of glucose by forming a hydrogen bond with glucose and reducing the activation energy, thus increasing the production rate of HMF. The synthesized catalysts were analyzed using XRD, FT-IR, FE-SEM, EDS, and XPS. The amount of Zr, Cl, and S elements reported in the newly synthesized catalyst in this research by EDS is 37.44%, 1.01%, and 6.8%, respectively. The existence of C 1s (284.8 eV), O 1s (531.9 eV), Cl 2p (200.4 eV), Zr 3d (185.2 eV), and S 2p (168.4 eV) of UiO-66-SO3H-Cl was confirmed by conducting XPS analysis. The reaction range of 5-HMF produced from glucose by each of UiO-66, UiO-66-SO<sub>3</sub>H, and UiO-66-SO<sub>3</sub>H-Cl catalysts, was 10%, 23% and 74%, respectively, as determined by UV-Vis analysis was decided the results show that the UiO-66-SO<sub>3</sub>H-Cl catalyst with three functional groups synergistically increases the production of HMF from glucose.</p><h3>Graphical Abstract</h3><p>Conversion of glucose to HMF by UiO-66-SO<sub>3</sub>H-Cl multifunctional solid catalyst: Lewis acid (Zr cation) and Brønsted acid (SO<sub>3</sub>H group) are active sites for isomerizing glucose to fructose and dehydration of fructose to HMF, respectively. The -Cl group forms a hydrogen bond with glucose, increasing the production rate of HMF.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ngo Nguyen Tra My, Tran Thi Bich Quyen, Tran Minh Khang, Bui Le Anh Tuan, Doan Van Hong Thien
{"title":"Synthesis of Au/Cu2O/graphene quantum dots nanocomposites and its application for glucose oxidation","authors":"Ngo Nguyen Tra My, Tran Thi Bich Quyen, Tran Minh Khang, Bui Le Anh Tuan, Doan Van Hong Thien","doi":"10.1007/s12039-023-02239-1","DOIUrl":"10.1007/s12039-023-02239-1","url":null,"abstract":"<div><p>In this study, the novel Au/Cu<sub>2</sub>O/Graphene quantum dots nanocomposites have been synthesized <i>via</i> a fast, simple and environmentally friendly method for the first time. Specifically, Cu<sub>2</sub>O nanocubes (Cu<sub>2</sub>O NCBs) synthesized by a reduction reaction at room temperature were combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) obtained from low-cost and naturally abundant material. The synthesized Au/Cu<sub>2</sub>O/GQDs were characterized by UV-vis, FTIR, XRD, TEM, FESEM, and EDS. The results show that the Au/Cu<sub>2</sub>O/GQDs have an average size of about 32-36 nm, in which the diameter of Au NPs is ~28-32 nm, Cu<sub>2</sub>O particles have the form of nanocube with the size of ~29-33 nm and GQDs are small spherical with an average size of ~5 nm. In addition, the electrochemical properties of the Au/Cu<sub>2</sub>O/GQDs electrodes were investigated using the cyclic voltammetry (CV) technique. The obtained results show that the Au/Cu<sub>2</sub>O/GQDs have high electroactivity, which are very potential and promising to be used in glucose sensor with a very wide concentration of glucose detection range from 10<sup>-10</sup> M to 1 M with a the LOD of 70 nM (7×10<sup>-8</sup> M) and a high sensitivity of 32.5 μAμM<sup>-1</sup>cm<sup>-2</sup>. Therefore, Au/Cu<sub>2</sub>O/GQDs will be potential candidate for non-enzymatic sensitive glucose sensors in the future.</p><h3>Graphical abstract</h3><p>Cu<sub>2</sub>O nanocubes (Cu<sub>2</sub>O NCBs) were successfully combined with Au nanoparticles (Au NPs) and Graphene quantum dots (GQDs) to generate Au/Cu<sub>2</sub>O/GQDs nanocomposites. The properties and morphology of synthesized Au/Cu<sub>2</sub>O/GQDs were also studied. Au/Cu<sub>2</sub>O/GQDs showed promising electrochemical activity and performed its applicability for glucose detection with a wide concentration of glucose detection range from 10<sup>-10</sup> M to 1 M.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyu Zhang, Dong Yan, Rui Xu, Yuqi Tang, Shuangping Xu, Yanqing Qu, Jingyu Xu, Boyu Du, Hongge Jia
{"title":"Synthesis of rhodium catalyst [Rh(cod)(TTT)2] with amino group ligand and its catalytic performance for phenylacetylene polymerization","authors":"Mingyu Zhang, Dong Yan, Rui Xu, Yuqi Tang, Shuangping Xu, Yanqing Qu, Jingyu Xu, Boyu Du, Hongge Jia","doi":"10.1007/s12039-023-02246-2","DOIUrl":"10.1007/s12039-023-02246-2","url":null,"abstract":"<div><p>A new rhodium complex [Rh(cod)(TTT)<sub>2</sub>] was synthesized by [Rh(cod)Cl]<sub>2</sub> as a precursor, and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTT) as a ligand. Its structure was verified by <sup>1</sup>H and <sup>13</sup>C NMR. The results indicate that the complex shows high activity in phenylacetylene polymerization. It was applied to the polymerization of phenylacetylene with a yield of 45.0% and Mw = 2.26×10<sup>5</sup> at ultra-low rhodium feed ratio ([Rh.]/[M.]=1/60000).</p><h3>Graphical abstract</h3><p>A new rhodium complex [Rh(cod)(TTT)<sub>2</sub>] was synthesized by [Rh(cod)Cl]<sub>2</sub> as a precursor, and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTT) as a ligand. It was applied to the polymerization of phenylacetylene with a yield of 45.0% and Mw = 2.26×10<sup>5</sup> at ultra-low rhodium feed ratio ([Rh.]/[M.]=1/60000\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Sheeba Gnana Selvi, G V Vijayaraghavan, B Janarthanan, K Inbarajan
{"title":"Incorporation of Ag decorated rGO ON TiO2/dye photoanode for dye-sensitized solar cell applications","authors":"M Sheeba Gnana Selvi, G V Vijayaraghavan, B Janarthanan, K Inbarajan","doi":"10.1007/s12039-023-02248-0","DOIUrl":"10.1007/s12039-023-02248-0","url":null,"abstract":"<p>A dye-sensitized solar cell (DSSC) has been fabricated with a photoanode made with silver-decorated reduced graphene oxide over the layer of TiO<sub>2</sub> nanoparticle coated over the FTO substrate using the Doctor Blade method. Due to the excellent electrical conductivity of silver decorated reduced graphene oxide and high adsorption of dye molecules, the cell parameters are enhanced. Three different concentrations of Ag decorated rGO (0.1% wt, 0.2% wt, and 0.3% wt) have been considered for this study and are compared with pure TiO<sub>2</sub>-based DSSC. It is confirmed that the 0.1% wt concentration of TiO<sub>2</sub>-Ag decorated rGO has shown better performance than the other concentrations as well as the pure TiO<sub>2</sub> photoanode. Natural dyes having chlorophyll pigment have been used as sensitizers, and graphene-based counter electrodes are incorporated in all solar cells. DSSC of 0.1% wt concentration of TiO<sub>2</sub>-Ag decorated rGO has given short circuit current density, open circuit voltage, fill factor, and power conversion efficiency of 3.768 mA/cm<sup>2</sup>, 0.6518 V, 0.566, and 1.39%, respectively. The higher the concentration of Ag decorated rGO with TiO<sub>2</sub>, the lower the electron injection into the semiconductor oxide with increased band gap energy.</p><p>In this experiment, we found that 0.1% wt concentration of TiO<sub>2</sub>-Ag decorated rGO has given a short power conversion efficiency of 1.39%, respectively.</p>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A kinetic and mechanistic investigation of oxidation of D-Mannitol by Diperiodatocuprate (III) in an aqueous alkaline medium","authors":"Sandeep R Kurundawade, Sharanappa T Nandibewoor","doi":"10.1007/s12039-023-02240-8","DOIUrl":"10.1007/s12039-023-02240-8","url":null,"abstract":"<div><p>The study investigates the kinetics associated with the oxidation of D-Mannitol (D-Mann) by diperiodatocuprate(III) (DPC) in an aqueous alkaline medium using spectrophotometric method. Reaction medium’s ionic strength was maintained constant at 0.60 mol dm<sup>-3</sup>. First-order kinetics in [DPC] and less than unit order for [D-Mann] and [alkali] were observed in the reaction. It was of the negative fractional order in [periodate]. It was determined that the reaction of substrate D-Mann with DPC in an alkaline medium shows 1(D-Mann):4(DPC) stoichiometry. Ionic strength of the medium had no effect on the rate of reaction and same was the observation with dielectric constant. The products of reaction were identified by FTIR and confirmed by LC-ESI-MS spectral data. The reaction constants for each step of the mechanism were determined. For the slow step of reaction mechanism, activation parameters were calculated and discussed. Further, thermodynamic quantities for the reactions were also estimated.</p><h3>Graphical abstract</h3><p>Based on the literature survey, DPC was chosen for the current study. DPC was prepared by the reported methods as cited in the manuscript. Stable reaction mixtures were prepared in two different reagent bottles and maintained at a desired temperature using a water bath. The reaction between the oxidant DPC and substrate D-Mannitol was spectrophotometrically analyzed by a UV-Vis spectrophotometer. With the help of data obtained, graphs were plotted to obtain k<sub>obs</sub> for different variations, and the mechanism was synthesized. A rate law for the reaction under investigation was proposed based on the results and mechanism.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139773299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaishali Yadav, Rohitash Kumar, Rishu, Vimal K Bhardwaj
{"title":"Comparative DNA binding ability and phosphatase-like activity of mono and dinuclear Ni (II) complexes: a structure-activity correlation","authors":"Vaishali Yadav, Rohitash Kumar, Rishu, Vimal K Bhardwaj","doi":"10.1007/s12039-023-02242-6","DOIUrl":"10.1007/s12039-023-02242-6","url":null,"abstract":"<div><p>Two Ni(II) complexes <b>[(Ni L1)(CH</b><sub><b>3</b></sub><b>COO) (H</b><sub><b>2</b></sub><b>O)</b><sub><b>2</b></sub><b>](1)</b> and <b>[{(NiL2) (CH3COO)}</b><sub><b>2</b></sub><b> (µ-H</b><sub><b>2</b></sub><b>O)] (2)</b> having different coordination environments around metal centres have been selected to investigate structure-activity correlation for DNA binding and homogenous phosphatase-like activities. Complex <b>1</b> is a monomer in which the octahedral Ni(II) center is coordinated to phenolate oxygen along with two nitrogen atoms from imine and amine groups of the deprotonated ligand <b>HL1</b>. An oxygen atom of the acetate group is coordinated in monodentate mode, and two coordinated water molecules occupy the other two axial sites. Complex <b>2</b> is a dimer where each Ni(II) centre is coordinated in an octahedral environment through one imine nitrogen, one amine nitrogen, two bridging phenolate oxygens from two deprotonated ligands (<b>HL2)</b> molecules, a mono-dentate acetate group, and a bridging water molecule. The role of structural features of both the complexes has been studied in DNA binding activity and phosphate ester bond cleavage of bis(4-nitrophenyl) phosphate (BNPP) as a model substrate. Complex <b>2</b> showed higher DNA binding ability than complex <b>1</b> due to its stable bridging structure and high nuclearity. The catalytic phosphate ester bond hydrolysis of BNPP was explored with both complexes spectrophotometrically. The dinuclear complex <b>2</b> also exhibited a higher rate of acceleration in the BNPP hydrolysis than mononuclear complex <b>1</b>. The active nucleophile from the coordinated water and cooperativity in two metal centres of complex <b>2</b> are the key features to cleave the phosphate ester bond of the substrate. Further, the first-order rate constants and various kinetic parameters based on the Michaelis-Menten equation were calculated for each complex. A significant phosphatase-like activity for complex <b>2</b> has been observed with a turnover number of 1.23 × 10<sup>−2</sup> s<sup>−1</sup>.</p><h3>Graphical abstract</h3><p>A structure-activity relationship for phosphatase-like catalytic activities of two mono and di nuclear Ni(II) complexes has been studied. Dinuclear complex <b>2</b> exhibits higher phosphatase-like activity due to coordinated water molecules and cooperativity between two metal centres.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxidative decarboxylation of arylacetic acids and arylacetic esters with singlet molecular oxygen generated from trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolan-3-yl ethaneperoxate","authors":"Z Najminejad","doi":"10.1007/s12039-023-02243-5","DOIUrl":"10.1007/s12039-023-02243-5","url":null,"abstract":"<div><p>An efficient method for the oxidative decarboxylation of arylacetic acids and arylacetic esters using trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolane-3-yl ethaneperoxate in combination with KOH as base is reported. The decarboxylation of carboxylic acids and their derivatives was efficiently achieved with singlet molecular oxygen. Singlet molecular oxygen was produced <i>in situ</i> from the fragmentation of the trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolane-3-yl ethaneperoxate in the presence of KOH, and it has been explored as an effective oxidant for oxidative decarboxylation of arylacetic acids. Further investigation showed that the reaction also permits the synthesis of aromatic ketones by oxidative decarboxylation of arylacetic esters.</p><h3>Graphical abstract</h3><p>An efficient method for the oxidative decarboxylation of arylacetic acids and arylacetic esters is reported.The decarboxylation of carboxylic acids and their derivatives were efficiently achieved with singlet molecular oxygen. Singlet molecular oxygen was produced insitu from fragmentation of the trans-5-hydroperoxy-3,5-dimethyl-1,2- dioxolane-3-yl ethaneperoxate in the presence of KOH, and it has been explored as an effective oxidant for oxidative decarboxylation of arylacetic acids and arylacetic esters.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Star-shaped Te(VI)-Te(VI) complex and an octanuclear heterometallic Te2Sb6 oxo cluster","authors":"Gujju Narsimhulu, Viswanathan Baskar","doi":"10.1007/s12039-023-02238-2","DOIUrl":"10.1007/s12039-023-02238-2","url":null,"abstract":"<div><p>The reaction of telluric acid with di-organotellurium di chloride (R<sub>2</sub>TeCl<sub>2</sub>) and tri-organoantimony dichloride (R<sub>3</sub>SbCl<sub>2</sub>) has been carried out in binary solvent using solvothermal synthesis method and isolated high-phase purity compounds. Single crystal X-ray diffraction studies revealed the formation of a novel mixed valent tellurium (VI) containing clusters Te<sup>VI</sup>[OTe<sup>IV</sup>(<i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>Cl]<sub>6</sub> (R = <i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>) (<b>1</b>) and [Te(µ<sub>2</sub>-O<sub>5</sub>SbPh<sub>3</sub>)(OSbh<sub>3</sub>Cl)]<sub>2</sub> (<b>2</b>). Cluster <b>1</b> has a central Te(VI) atom which is connected to six oxygen atoms octahedrally, further this oxygens bridging to six other tellurium atoms (IV). Cluster <b>2</b> is an octanuclear heterometallic cluster that is built up of a [Te (VI), Sb (V)] Te<sub>2</sub>Sb<sub>6</sub> oxo-centered butterfly core. The products have been analyzed using single crystal X-ray diffractions, powder X-ray diffraction, and IR spectroscopic and analytical methods.</p><h3>Graphical Abstract</h3><p>A star-shaped mixed valent tellurium [(VI), (IV)] cluster Te<sup>VI</sup>[OTe<sup>IV</sup>(<i>p</i>-MeOC<sub>6</sub>H<sub>4</sub>)<sub>2</sub>Cl]<sub>6</sub> (<b>1</b>) has been synthesized in binary solvent (Acetonitrile/DMF) medium. Cluster [Te(µ<sub>2</sub>-O<sub>5</sub>SbPh<sub>3</sub>)(OSbh<sub>3</sub>Cl)]<sub>2</sub> (<b>2)</b> is an octanuclear heterometallic assembly built up of Te (VI) and Sb (V) ions, containing an oxo-centered butterfly core.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139771794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dilip K Maity, Satrajit Adhikari, Susanta Mahapatra
{"title":"Interplay of structure and dynamics in reaction pathways, chemical reactivity and biological systems","authors":"Dilip K Maity, Satrajit Adhikari, Susanta Mahapatra","doi":"10.1007/s12039-023-02233-7","DOIUrl":"10.1007/s12039-023-02233-7","url":null,"abstract":"","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}