{"title":"High-resolution spectroscopic probing of allowed and forbidden ortho- and para-nuclear spin-isomers of NH3","authors":"Indrayani Patra, Soumyadipta Chakraborty, Ardhendu Pal, Biswajit Panda, Manik Pradhan","doi":"10.1007/s12039-024-02281-7","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is a pyramidal symmetric top molecule with inversion motion and it exists in two distinct nuclear spin isomeric forms, <i>ortho</i>-NH<sub>3</sub> (<i>K</i> = 3n) and <i>para</i>-NH<sub>3</sub> (<i>K</i> ≠ 3n). Here, a pair of electric dipole-allowed [<sup>R</sup>Q(4,3) and <sup>P</sup>P(2,2)] and weak forbidden [<sup>O</sup>P(3,3) and <sup>S</sup>Q(8,1)] transitions of gas-phase NH<sub>3</sub> were probed in the ν<sub>4</sub> fundamental vibrational band occurring at 6.2 <i>µ</i>m mid-IR interference-free spectral region using an external-cavity quantum cascade laser coupled cavity ring-down spectrometer. We have experimentally achieved the ortho-to-para ratio (OPR) of (1.03 ± 0.24) and (1.08 ± 0.14) at room temperature (296 K) for the allowed and forbidden transitions of NH<sub>3</sub>, respectively. Furthermore, our experimental findings confirm that the nuclear spin-symmetry is conserved under the nonreactive perturber-induced collisional processes. This study paves the way to directly probe the nuclear spin-isomers of gas-phase NH<sub>3</sub> and thus may lead to an in-depth understanding of nuclear spin-isomerism associated with various physical and chemical processes.</p><h3>Graphical Abstract</h3><p>This work shows the high-resolution probing of <i>ortho-</i> and <i>para-</i>nuclear spin-isomers of NH<sub>3</sub> in the gas phase at room temperature using quantum cascade laser coupled cavity ring-down spectroscopy at 6.2 <i>µ</i>m mid-IR spectral region.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02281-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia (NH3) is a pyramidal symmetric top molecule with inversion motion and it exists in two distinct nuclear spin isomeric forms, ortho-NH3 (K = 3n) and para-NH3 (K ≠ 3n). Here, a pair of electric dipole-allowed [RQ(4,3) and PP(2,2)] and weak forbidden [OP(3,3) and SQ(8,1)] transitions of gas-phase NH3 were probed in the ν4 fundamental vibrational band occurring at 6.2 µm mid-IR interference-free spectral region using an external-cavity quantum cascade laser coupled cavity ring-down spectrometer. We have experimentally achieved the ortho-to-para ratio (OPR) of (1.03 ± 0.24) and (1.08 ± 0.14) at room temperature (296 K) for the allowed and forbidden transitions of NH3, respectively. Furthermore, our experimental findings confirm that the nuclear spin-symmetry is conserved under the nonreactive perturber-induced collisional processes. This study paves the way to directly probe the nuclear spin-isomers of gas-phase NH3 and thus may lead to an in-depth understanding of nuclear spin-isomerism associated with various physical and chemical processes.
Graphical Abstract
This work shows the high-resolution probing of ortho- and para-nuclear spin-isomers of NH3 in the gas phase at room temperature using quantum cascade laser coupled cavity ring-down spectroscopy at 6.2 µm mid-IR spectral region.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.