{"title":"Visible light-enhanced synergistic catalysis of AuCu nanostructures immobilized within porous support","authors":"Ajay, Heeralal Jaipal, Ryo Watanabe, Choji Fukuhara, Priyanka Verma","doi":"10.1007/s12039-025-02356-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, 2.5 wt% of Au and Cu were uniformly immobilized within the pores of hierarchically porous zeotype materials to investigate the plasmonic catalysis under visible-light irradiation. Both monometallic and bimetallic catalysts of Au and Cu were prepared to investigate the catalytic performance due to the synergistic interaction between the two metal nanoparticles (NPs). All the prepared catalysts were characterized using PXRD, HAADF-STEM, DRS-UV and XAS to unveil the proximity and interaction between bimetallic NPs. The HAADF-STEM images revealed the proximity between Au and Cu NPs, and a significant difference in the NPs size was observed. Owing to the very small size of Cu NPs, exceptional behaviour of Cu-containing catalysts was observed. Plasmonic activity of the photocatalysts was investigated using <i>p</i>-nitrophenol (4-NP) reduction as a model reaction in the presence of ammonia borane as an <i>in situ</i> source of hydrogen. Interestingly, a 3.7-times enhancement in the rate of 4-NP reduction was achieved in the presence of bimetallic Cu/Au/HP-AlPO-5 (LSPR) under visible light irradiation compared to the dark conditions. We believe our findings will pave the way for advanced research to understand the unique plasmonic behaviour of AuCu NPs under light conditions.</p><h3>Graphical abstract</h3><p>In this report, the CuAu bimetallic nanostructures immobilized within the hierarchically porous zeotype material have been prepared via the LSPR-assisted synthesis method. The nanostructures displayed synergistic catalytic performance in reducing nitroaromatics. A 3.7 times enhancement in the reduction rate was achieved under visible light irradiation compared to the dark conditions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"137 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-025-02356-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, 2.5 wt% of Au and Cu were uniformly immobilized within the pores of hierarchically porous zeotype materials to investigate the plasmonic catalysis under visible-light irradiation. Both monometallic and bimetallic catalysts of Au and Cu were prepared to investigate the catalytic performance due to the synergistic interaction between the two metal nanoparticles (NPs). All the prepared catalysts were characterized using PXRD, HAADF-STEM, DRS-UV and XAS to unveil the proximity and interaction between bimetallic NPs. The HAADF-STEM images revealed the proximity between Au and Cu NPs, and a significant difference in the NPs size was observed. Owing to the very small size of Cu NPs, exceptional behaviour of Cu-containing catalysts was observed. Plasmonic activity of the photocatalysts was investigated using p-nitrophenol (4-NP) reduction as a model reaction in the presence of ammonia borane as an in situ source of hydrogen. Interestingly, a 3.7-times enhancement in the rate of 4-NP reduction was achieved in the presence of bimetallic Cu/Au/HP-AlPO-5 (LSPR) under visible light irradiation compared to the dark conditions. We believe our findings will pave the way for advanced research to understand the unique plasmonic behaviour of AuCu NPs under light conditions.
Graphical abstract
In this report, the CuAu bimetallic nanostructures immobilized within the hierarchically porous zeotype material have been prepared via the LSPR-assisted synthesis method. The nanostructures displayed synergistic catalytic performance in reducing nitroaromatics. A 3.7 times enhancement in the reduction rate was achieved under visible light irradiation compared to the dark conditions.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.