Journal of Atmospheric Chemistry最新文献

筛选
英文 中文
Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests 北纬和中纬度森林地表植物释放的挥发性有机化合物
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2022-03-15 DOI: 10.1007/s10874-022-09434-3
Valery A. Isidorov, Ewa Pirożnikow, Viktoria L. Spirina, Alexander N. Vasyanin, Svetlana A. Kulakova, Irina F. Abdulmanova, Andrei A. Zaitsev
{"title":"Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests","authors":"Valery A. Isidorov,&nbsp;Ewa Pirożnikow,&nbsp;Viktoria L. Spirina,&nbsp;Alexander N. Vasyanin,&nbsp;Svetlana A. Kulakova,&nbsp;Irina F. Abdulmanova,&nbsp;Andrei A. Zaitsev","doi":"10.1007/s10874-022-09434-3","DOIUrl":"10.1007/s10874-022-09434-3","url":null,"abstract":"<div><p>The forests of the boreal and mid-latitude zones of the Northern Hemisphere are the largest source of reactive volatile organic compounds (VOCs), which have an important impact on the processes occurring in the atmospheric boundary layer. However, the composition of biogenic emissions from them remains incompletely characterized, as evidenced by the significant excess OH radical concentrations predicted by models in comparison with those observed under the forest canopy. The missing OH sink in the models may be related to the fact that they do not take into account the emission of highly reactive VOCs by vegetation on the forest floor. In this work, we report the results of laboratory determinations of the composition of VOCs emitted by representatives of different groups of plants that form the living soil cover (LSC) in the forests of the boreal and mid-latitude zones: bryophytes, small shrubs, herbaceous plants, and ferns. In the chromatograms of volatile emissions of all 11 studied plant species, 254 compounds with carbon atoms ranging in number from two to 20 were registered. All plants were characterized by the emission of terpenes, accounting for 112 compounds, and the second largest group (35 substances) was formed by carbonyl compounds. Both groups of compounds are characterized by high reactivity and are easily included in the processes of gas-phase oxidation with the participation of radicals HO, NO<sub>3</sub> and ozone. These data indicate the importance of a thorough study of the so far disregarded source of VOCs, that is, the LSC in forests.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 3","pages":"153 - 166"},"PeriodicalIF":2.0,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-022-09434-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4907152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Estimation of aerosol acidity at a suburban site of Nanjing using machine learning method 利用机器学习方法估算南京郊区某站点气溶胶酸度
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2022-02-26 DOI: 10.1007/s10874-022-09433-4
Miaomiao Tao, Ying Xu, Jiaxing Gong, Qingyang Liu
{"title":"Estimation of aerosol acidity at a suburban site of Nanjing using machine learning method","authors":"Miaomiao Tao,&nbsp;Ying Xu,&nbsp;Jiaxing Gong,&nbsp;Qingyang Liu","doi":"10.1007/s10874-022-09433-4","DOIUrl":"10.1007/s10874-022-09433-4","url":null,"abstract":"<div><p>Aerosol acidity is found to exert negative effects on ecosystem diversity and architectural appearance. Current analytical technology is unable to measure in-situ aerosol acidity (i.e., pH value) of ambient fine particle due to the absence of appropriate pH electrodes. Thermodynamic modeling methods including ISORROPIA II and Extended Aerosol Inorganics Model Version IV (E-AIM V) are mostly used in the estimation of in-situ aerosol acidity with the inputs of water soluble ions worldwide. This study proposes a flexible method with the aid of multilayer perceptron (MLP) neural network analysis to estimate in-situ aerosol acidity of ambient fine particle (&lt; 2.5 μm in aerodynamic diameter or PM<sub>2.5</sub>) with the inputs of water soluble ions (i.e., Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>), gaseous air pollutants (i.e., CO, NO<sub>2</sub>, SO<sub>2</sub>) and meteorological parameters (i.e., humidity and temperature). The dataset consists of ambient fine particles collected across four individual sampling periods in the autumn and winter of 2019 and 2020 at a suburban site of Nanjing. The pH values of ambient fine particle were found to be ranging from 2.0 to 4.0 estimated by E-AIM model. Levels of pH estimated by MLP neural network analysis agreed well with pH values estimated by E-AIM model with R<sup>2</sup> value of 0.98.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 2","pages":"141 - 151"},"PeriodicalIF":2.0,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5002264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Long-range transport of Asian emissions to the West Pacific tropical tropopause layer 亚洲排放物向西太平洋热带对流层顶层的远距离输送
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2022-02-23 DOI: 10.1007/s10874-022-09430-7
Victoria Treadaway, Elliot Atlas, Sue Schauffler, Maria Navarro, Rei Ueyama, Leonhard Pfister, Troy Thornberry, Andrew Rollins, James Elkins, Fred Moore, Karen Rosenlof
{"title":"Long-range transport of Asian emissions to the West Pacific tropical tropopause layer","authors":"Victoria Treadaway,&nbsp;Elliot Atlas,&nbsp;Sue Schauffler,&nbsp;Maria Navarro,&nbsp;Rei Ueyama,&nbsp;Leonhard Pfister,&nbsp;Troy Thornberry,&nbsp;Andrew Rollins,&nbsp;James Elkins,&nbsp;Fred Moore,&nbsp;Karen Rosenlof","doi":"10.1007/s10874-022-09430-7","DOIUrl":"10.1007/s10874-022-09430-7","url":null,"abstract":"<div><p>Rapid transport by deep convection is an important mechanism for delivering surface emissions of reactive halocarbons and other trace species to the tropical tropopause layer (TTL), a key region of transport to the stratosphere. Recent model studies have indicated that increased delivery of short-lived halocarbons to the TTL could delay stratospheric ozone recovery. We report here measurements in the TTL over the western Pacific Ocean of short-lived halocarbons and other trace gases that were transported eastward after convective lofting over Asia. Back-trajectories indicate the sampled air primarily originated from the Indian subcontinent. While short-lived organic bromine species show no measurable change over background mixing ratios, short-lived chlorinated organic species were elevated above background mixing ratios (dichloromethane (Δ48.2 ppt), 1,2-dichloroethane (Δ4.21 ppt), and chloroform (Δ4.85 ppt)), as well as longer-lived halogenated species, methyl chloride (Δ82.0 ppt) and methyl bromide (Δ1.91 ppt). This transported air mass thus contributed an excess equivalent effective chlorine burden of 316 ppt, with 119 ppt from short lived chlorinated species, to the TTL. Non-methane hydrocarbons (NMHC) were elevated 60 - 400% above background mixing ratios. The NMHC measurements were used to characterize the potential source regions, which are consistent with the convective influence analysis. The measurements indicate a chemical composition heavily impacted by biofuel/biomass burning and industrial emissions. This work shows that convection can loft Asian emissions, including short-lived chlorocarbons, and transport them to the remote TTL.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 2","pages":"81 - 100"},"PeriodicalIF":2.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-022-09430-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4890058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable carbon and nitrogen isotopic characteristics of PM2.5 and PM10 in Delhi, India 德里地区PM2.5和PM10碳氮稳定同位素特征
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2022-01-23 DOI: 10.1007/s10874-022-09429-0
Sudhir Kumar Sharma, Supriya G. Karapurkar, Damodar M. Shenoy, Tuhin Kumar Mandal
{"title":"Stable carbon and nitrogen isotopic characteristics of PM2.5 and PM10 in Delhi, India","authors":"Sudhir Kumar Sharma,&nbsp;Supriya G. Karapurkar,&nbsp;Damodar M. Shenoy,&nbsp;Tuhin Kumar Mandal","doi":"10.1007/s10874-022-09429-0","DOIUrl":"10.1007/s10874-022-09429-0","url":null,"abstract":"<div><p>This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM<sub>2.5</sub> and PM<sub>10</sub>) along with stable isotopic composition (δ<sup>13</sup>C and δ<sup>15</sup>N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean ± standard deviation at 1σ) of PM<sub>2.5</sub> and PM<sub>10</sub> were 223 ± 69 µg m<sup>−3</sup> and 328 ± 65 µg m<sup>−3</sup>, respectively during winter season whereas the mean concentrations of PM<sub>2.5</sub> and PM<sub>10</sub> were 147 ± 22 µg m<sup>−3</sup> and 236 ± 61 µg m<sup>−3</sup>, respectively during summer season. The mean value of δ<sup>13</sup>C (range: − 26.4 to − 23.4‰) and δ<sup>15</sup>N (range: 3.3 to 14.4‰) of PM<sub>2.5</sub> were − 25.3 ± 0.5‰ and 8.9 ± 2.1‰, respectively during winter season whereas the mean value of δ<sup>13</sup>C (range: − 26.7 to − 25.3‰) and δ<sup>15</sup>N (range: 2.8 to 11.5‰) of PM<sub>2.5</sub> were − 26.1 ± 0.4‰ and 6.4 ± 2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM<sub>2.5</sub> and PM<sub>10</sub> at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ<sup>13</sup>C with other C (OC, TC, OC/EC and OC/WSOC) components and δ<sup>15</sup>N with other N components (TN, NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>−</sup>) are also support the source identification of isotopic signatures.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"67 - 79"},"PeriodicalIF":2.0,"publicationDate":"2022-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4891668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Spatio-temporal variation and sensitivity analysis of aerosol particulate matter during the COVID-19 phase-wise lockdowns in Indian cities 印度城市新冠肺炎分阶段封城期间气溶胶颗粒物时空变化及敏感性分析
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2022-01-20 DOI: 10.1007/s10874-021-09428-7
Ahamed Ibrahim S.N.,  Sri Shalini S,  Ramachandran A,  Palanivelu K
{"title":"Spatio-temporal variation and sensitivity analysis of aerosol particulate matter during the COVID-19 phase-wise lockdowns in Indian cities","authors":"Ahamed Ibrahim S.N.,&nbsp; Sri Shalini S,&nbsp; Ramachandran A,&nbsp; Palanivelu K","doi":"10.1007/s10874-021-09428-7","DOIUrl":"10.1007/s10874-021-09428-7","url":null,"abstract":"<div><p>At the pandemic of COVID-19, the movement of business and other non-essential activities were majorly restricted at the end of March 2020 in India and continued in different lockdown phases until June 2020. By categorically, studying sensitivity towards anthropogenic factors with other environmental implications in urban Indian cities during phase-wise lockdown scenarios will pave the way for a refined Clean Air Programme (CAP). In this study, the aerosol particulate matter variations between the lockdown phases in both spatial and temporal scales have been explored along with cities exceeding national ambient air quality (NAAQ) standards covering different geographical regions of India for their air quality level. The results of the spatial pattern of Copernicus Atmosphere Monitoring System (CAMS) near-real-time data showed a negative change both in Aerosol Optical Depth (AOD) (-0.2 to 0.1) and black carbon AOD (bcAOD) (-0.9 to -0.75). The changes were evident in successive phases of lockdown with an overall AOD reduction of about 70–90%. Southern urban cities showed a significant impact of mobile sources from temporal analysis than other cities. Principal Component Analysis (PCA) for effects of pollutants by anthropogenic factors (mobile and point source) and meteorological factors (wind speed, wind direction, solar radiation, relative humidity) revealed the two significant driving factors. PM reduction was about 50–70%, predominantly due to anthropogenic factors. The factor analysis revealed the influence of meteorological factors between the major urban cities (Delhi, Kolkata, Mumbai, Chennai, Bengaluru, and Hyderabad). Cities that exceed NAAQ standard performed well during phase-wise lockdowns, exceptional to cities in Gangetic plain. This study helps to frame region-specific strategic action plans for the CAP.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"39 - 66"},"PeriodicalIF":2.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09428-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5087544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Wet deposition of atmospheric inorganic reactive nitrogen (Nr) across an urban-industrial-rural transect of Nr emission hotspot (India) 大气无机活性氮(Nr)在Nr排放热点城市-工业-农村样带中的湿沉降(印度)
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2021-10-26 DOI: 10.1007/s10874-021-09425-w
Moh Naseem, U. C. Kulshrestha
{"title":"Wet deposition of atmospheric inorganic reactive nitrogen (Nr) across an urban-industrial-rural transect of Nr emission hotspot (India)","authors":"Moh Naseem,&nbsp;U. C. Kulshrestha","doi":"10.1007/s10874-021-09425-w","DOIUrl":"10.1007/s10874-021-09425-w","url":null,"abstract":"<div><p>The present study comprehensively reports the simultaneous measurement of wet deposition of total inorganic nitrogen (TIN; which is the sum of the NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N) at three different sites in Nr emission hotspot of Indo-Gangetic plain (IGP) over a year-long temporal scale from October 2017 to September 2018. At rural Meetli (MTL) site, urban Baraut (BRT) site and industrial Loni (LNI) site, the annual wet deposition of NH<sub>4</sub><sup>+</sup>-N was estimated as 21.87, 19.48 and 7.43 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively; the annual wet deposition NO<sub>3</sub><sup>−</sup>-N was estimated as 12.96, 12.17 and 4.44 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively; and the annual wet deposition of TIN was estimated as 34.83, 31.64 and 11.87 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively. NH<sub>4</sub><sup>+</sup>-N was dominantly contributing species in annual, monsoon and non-monsoon-time wet deposition of TIN at all sites. The spatial gradient (variability) in percent contribution of NH<sub>4</sub><sup>+</sup> to total annual volume-weighted mean (VWM) concentration of all analyte ions was observed as MTL (43.23%) &gt; BRT (37.90%) &gt; LNI (30%). On the other hand, the spatial gradient in percent contribution of NO<sub>3</sub><sup>−</sup> to total annual VWM concentration of all analyte ions was observed as MTL (7.45%) &gt; BRT (6.89%) &gt; LNI (5.32%). The extremely narrow range of NH<sub>4</sub><sup>+</sup>-N/NO<sub>3</sub><sup>−</sup>-N ratios (ranging from 1.60 at BRT site to 1.69 at LNI site) showed the approximately equal relative abundance of oxidized and reduced nitrogen (N) deposition across all sites. Inferences from enrichment factor analysis, principal component analysis and Pearson’s correlation coefficient analysis suggested that across all sites, virtually all NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N depositions were originated anthropogenically. The annual wet deposition of TIN measured in this study showed ≥ 6865%, ≥ 6228% and ≥ 2274% increment than the natural N deposition rate at MTL, BRT and LNI site, respectively. These empirically measured annual wet depositions of TIN also emanated theoretical transgression of critical N load threshold across all sites therefore signifying probable undermining of long-term elastic stability and resilience of ecosystems against stressor in the study domain.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"271 - 304"},"PeriodicalIF":2.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09425-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5026933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size distributions and dry deposition fluxes of water-soluble inorganic nitrogen in atmospheric aerosols in Xiamen Bay, China 厦门湾大气气溶胶中水溶性无机氮的粒径分布和干沉降通量
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2021-10-11 DOI: 10.1007/s10874-021-09427-8
Shui-Ping Wu, Xiang Li, Yang Gao, Mei-Jun Cai, Chao Xu, James J. Schwab, Chung-Shin Yuan
{"title":"Size distributions and dry deposition fluxes of water-soluble inorganic nitrogen in atmospheric aerosols in Xiamen Bay, China","authors":"Shui-Ping Wu,&nbsp;Xiang Li,&nbsp;Yang Gao,&nbsp;Mei-Jun Cai,&nbsp;Chao Xu,&nbsp;James J. Schwab,&nbsp;Chung-Shin Yuan","doi":"10.1007/s10874-021-09427-8","DOIUrl":"10.1007/s10874-021-09427-8","url":null,"abstract":"<div><p>Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, and TSP were 14.8 ± 5.6, 21.1 ± 9.0, 35.4 ± 14.2 μg m<sup>−3</sup>, and 45.2 ± 21.3 μg m<sup>−3</sup>, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3 ± 3.3, 2.1 ± 1.2, 3.3 ± 1.5, and 1.6 ± 0.8 μg m<sup>−3</sup> in PM<sub>1</sub>, PM<sub>1-2.5</sub>, PM<sub>2.5–10</sub>, and PM<sub>&gt;10</sub>, respectively. In addition, pronounced seasonal variations of WSIIs in PM<sub>1</sub> and PM<sub>1-2.5</sub> were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO<sub>4</sub><sup>2−</sup>, NH<sub>4</sub><sup>+</sup> and K<sup>+</sup> were consistently present in the submicron particles while Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and Cl<sup>−</sup> mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO<sub>3</sub><sup>−</sup> was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH<sub>4</sub>NO<sub>3</sub>. For NH<sub>4</sub><sup>+</sup> and SO<sub>4</sub><sup>2−</sup>, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO<sub>3</sub>–N was lower than NH<sub>4</sub>–N, the dry deposition flux of NO<sub>3</sub>–N (35.77 ± 24.49 μmol N m<sup>−2</sup> d<sup>−1</sup>) was much higher than that of NH<sub>4</sub>–N (10.95 ± 11.89 μmol N m<sup>−2</sup> d<sup>−1</sup>), mainly due to the larger deposition velocities of NO<sub>3</sub>–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m<sup>−2</sup> d<sup>−1</sup>, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"17 - 38"},"PeriodicalIF":2.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09427-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4478433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Effects of light intensity on the production of VSLs from the marine diatom Ditylum brightwellii 光照强度对海洋硅藻白藻产VSLs的影响
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2021-09-17 DOI: 10.1007/s10874-021-09426-9
Minami Abe, Yuki Okuda, Shinya Hashimoto
{"title":"Effects of light intensity on the production of VSLs from the marine diatom Ditylum brightwellii","authors":"Minami Abe,&nbsp;Yuki Okuda,&nbsp;Shinya Hashimoto","doi":"10.1007/s10874-021-09426-9","DOIUrl":"10.1007/s10874-021-09426-9","url":null,"abstract":"<div><p>Very short-lived substances (VSLs) are known to play an important role in ozone depletion in the troposphere and stratosphere. Environmental factors that influence the production of these compounds by marine phytoplankton, which is known to be the source of these compounds in open oceans, have not yet been well studied. Here we examined the effects of light intensity on the production of VSLs by the marine diatom <i>Ditylum brightwellii</i>. Bromodichloromethane (CHBrCl<sub>2</sub>), dibromochloromethane (CHBr<sub>2</sub>Cl), bromoform (CHBr<sub>3</sub>), chloroform (CHCl<sub>3</sub>), and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>) in cultures incubated under full spectrum daylight intensities of 30, 60, and 120 µmol photons m<sup>− 2</sup> s<sup>− 1</sup> were measured using purge and trap gas chromatograph–mass spectrometry. Phytoplankton growth was monitored by measuring chlorophyll-<i>a</i> concentration and cell density. Both the chlorophyll-<i>a</i> concentration (the cell density) and the production rates of VSLs increased with increasing light intensity. The maximum production rates of CHBrCl<sub>2</sub>, CHBr<sub>2</sub>Cl, CHBr<sub>3</sub>, CHCl<sub>3</sub>, and CH<sub>2</sub>Br<sub>2</sub> were observed during the exponential or stationary phase, with the exception of CH<sub>2</sub>Br<sub>2</sub> incubated under 30 µmol photons m<sup>− 2</sup> s<sup>− 1</sup>. The chlorophyll <i>a</i>-normalized (or cell-normalized) production rates of VSLs increased with increasing light intensity, e.g., the maximum of chlorophyll <i>a</i>-normalized production rates of CHCl<sub>3</sub> under light intensities of 30, 60 and 120 µmol photons m<sup>− 2</sup> s<sup>− 1</sup> were 0.06, 0.46 and 1.84 µmol (g chlorophyll <i>a</i>) <sup>−1</sup> day<sup>− 1</sup>, respectively. Our results suggest that marine diatoms are one of the significant sources of VSLs and that light intensity is a significant factor in estimating VSLs emissions from the open ocean.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"1 - 16"},"PeriodicalIF":2.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09426-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4705977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Seasonal characteristics and sources of carbonaceous components and elements of PM10 (2010–2019) in Delhi, India 2010-2019年印度德里PM10碳质组分和元素的季节特征及来源
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2021-07-26 DOI: 10.1007/s10874-021-09424-x
Sudhir Kumar Sharma, Rubiya Banoo, Tuhin Kumar Mandal
{"title":"Seasonal characteristics and sources of carbonaceous components and elements of PM10 (2010–2019) in Delhi, India","authors":"Sudhir Kumar Sharma,&nbsp;Rubiya Banoo,&nbsp;Tuhin Kumar Mandal","doi":"10.1007/s10874-021-09424-x","DOIUrl":"10.1007/s10874-021-09424-x","url":null,"abstract":"<div><p>In this study we present the seasonal chemical characteristics and potential sources of PM<sub>10</sub> at an urban location of Delhi, India during 2010˗2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM<sub>10</sub> were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM<sub>10</sub> was computed as 227 ± 97 µg m<sup>−3</sup> with a range of 34˗734 µg m<sup>−3</sup>. The total carbonaceous aerosols in PM<sub>10</sub> was accounted for 22.5% of PM<sub>10</sub> mass concentration, whereas elements contribution to PM<sub>10</sub> was estimated to be 17% of PM<sub>10</sub>. The statistical analysis of OC <i>vs.</i> EC and OC <i>vs.</i> WSOC of PM<sub>10</sub> reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM<sub>10</sub> indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning + fossil fuel combustion (BB + FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM<sub>10</sub> in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"251 - 270"},"PeriodicalIF":2.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09424-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5005130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Kinetics for the photo-chemical degradation of Methyl butyrate in presence of Cl atoms and OH radicals Cl原子和OH自由基存在下丁酸甲酯光化学降解动力学
IF 2 4区 地球科学
Journal of Atmospheric Chemistry Pub Date : 2021-07-22 DOI: 10.1007/s10874-021-09417-w
Ramya Cheramangalath Balan, Rajakumar Balla
{"title":"Kinetics for the photo-chemical degradation of Methyl butyrate in presence of Cl atoms and OH radicals","authors":"Ramya Cheramangalath Balan,&nbsp;Rajakumar Balla","doi":"10.1007/s10874-021-09417-w","DOIUrl":"10.1007/s10874-021-09417-w","url":null,"abstract":"<div><p>The Cl/OH initiated temperature dependent photo-oxidative reaction kinetics of methyl butyrate (MB) were examined using a relative rate (RR) technique. Gas chromatography with flame ionization and mass spectrometric detection were used to monitor the concentration of the reactants and to identify the products. The temperature dependent kinetics of MB with Cl atoms were measured with respect to the reaction of Cl with C<sub>2</sub>H <sub>6</sub> and C<sub>2</sub>H<sub>4</sub>. The temperature dependent kinetics for the reaction of MB with OH radicals were measured using n- propanol and iso -propanol as references. The obtained rate coefficients for the Cl and OH reactions with MB are, k Cl(Expt) (T) = [(7.76 ± 0.47) × 10 <sup>−11</sup>] exp [(10.31 ± 0.20)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Expt) (T) = [(4.32 ± 0.21) × 10 <sup>−12</sup>] exp [-(25.26 ± 0.39)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> respectively. Dual level direct dynamics were used to perform the computational calculations to further elucidate the mechanisms over the studied temperature range. The rate coefficients for H-abstraction reactions were computed using Canonical Variational Transition State Theory with Small Curvature Tunneling (CVT/SCT) with Interpolated Single Point Energies (ISPE) method. The rate coefficients over the studied temperature range yielded the Arrhenius equations: k Cl(Theory) (200–400 K) = [(4.05 ± 0.54) × 10<sup>–11</sup>] exp [-(2.80 ± 0.11)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Theory) (200–400 K) = [(1.96 ± 0.68) × 10 -11] exp [-(384 ± 38)/T] cm<sup>3</sup> molecule <sup>−1</sup> s <sup>−1</sup>. Possible degradation mechanisms for the reactions are proposed based on the observed products. Thermo-chemical parameters, ozone formation potential, branching ratios, and the atmospheric lifetime of MB are calculated to understand the fate of MB in the atmosphere.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"219 - 238"},"PeriodicalIF":2.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09417-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4861276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信