Kamila Widziewicz-Rzońca, Halina Pyta, Krzysztof Słaby, Barbara Błaszczak, Patrycja Rogula-Kopiec, Barbara Mathews, Monika Błaszczak, Krzysztof Klejnowski
{"title":"城市环境中含金属颗粒的季节和分数变异性及其可吸入性分析","authors":"Kamila Widziewicz-Rzońca, Halina Pyta, Krzysztof Słaby, Barbara Błaszczak, Patrycja Rogula-Kopiec, Barbara Mathews, Monika Błaszczak, Krzysztof Klejnowski","doi":"10.1007/s10874-022-09438-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to calculate size-fractionated PM-bound metals concentration (Co, V, Ni, Cu, Mn, As, Cd, Pb, Cr and Hg) in a European hot spot area in terms of PM air pollution (Zabrze, Poland) and to show their deposition ratios in human airways. Additionally, meteorological data was used to conclude the probable influence of atmospheric conditions on the variability of the PM mass concentrations in different periods of the year. Data regarding the elemental composition of size-fractionated PM in various regions of Poland was also presented. The determination of the selected metals in PM-fractionated samples (PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub>) was performed in two periods – the heating and non-heating season. It was found that metals were primarily associated with particles less than 1 µm, however, the PM size distribution had shown bi-modal characteristics and the maxima of metal mass distribution occurred in both submicron and fine modes. High PM<sub>1</sub> mass loadings, observed especially in the non-heating season were probably due to an influx of fine and even smaller particles from traffic sources. Metals distributions as well as respiratory deposition ratios for PM-bound elements calculated using the MPPD V2.11 model favored nasal and head deposition. The overall mass deposition of metals in the respiratory tract of adults was: 0.39 (Head region, H); 0.07 (Tracheobronchial region, TB); 0.16 (Pulmonary region, P) respectively. No matter the season, the highest inhalable concentrations of metals were found for Cu, Mn, Cr and Pb. Only Cr and Pb are classified as carcinogenic and mutagenic (according to IARC classification).\n</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 1","pages":"77 - 101"},"PeriodicalIF":3.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the seasonal and fractional variability of metals bearing particles in an urban environment and their inhalability\",\"authors\":\"Kamila Widziewicz-Rzońca, Halina Pyta, Krzysztof Słaby, Barbara Błaszczak, Patrycja Rogula-Kopiec, Barbara Mathews, Monika Błaszczak, Krzysztof Klejnowski\",\"doi\":\"10.1007/s10874-022-09438-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to calculate size-fractionated PM-bound metals concentration (Co, V, Ni, Cu, Mn, As, Cd, Pb, Cr and Hg) in a European hot spot area in terms of PM air pollution (Zabrze, Poland) and to show their deposition ratios in human airways. Additionally, meteorological data was used to conclude the probable influence of atmospheric conditions on the variability of the PM mass concentrations in different periods of the year. Data regarding the elemental composition of size-fractionated PM in various regions of Poland was also presented. The determination of the selected metals in PM-fractionated samples (PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub>) was performed in two periods – the heating and non-heating season. It was found that metals were primarily associated with particles less than 1 µm, however, the PM size distribution had shown bi-modal characteristics and the maxima of metal mass distribution occurred in both submicron and fine modes. High PM<sub>1</sub> mass loadings, observed especially in the non-heating season were probably due to an influx of fine and even smaller particles from traffic sources. Metals distributions as well as respiratory deposition ratios for PM-bound elements calculated using the MPPD V2.11 model favored nasal and head deposition. The overall mass deposition of metals in the respiratory tract of adults was: 0.39 (Head region, H); 0.07 (Tracheobronchial region, TB); 0.16 (Pulmonary region, P) respectively. No matter the season, the highest inhalable concentrations of metals were found for Cu, Mn, Cr and Pb. Only Cr and Pb are classified as carcinogenic and mutagenic (according to IARC classification).\\n</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"80 1\",\"pages\":\"77 - 101\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-022-09438-z\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09438-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analysis of the seasonal and fractional variability of metals bearing particles in an urban environment and their inhalability
This study aimed to calculate size-fractionated PM-bound metals concentration (Co, V, Ni, Cu, Mn, As, Cd, Pb, Cr and Hg) in a European hot spot area in terms of PM air pollution (Zabrze, Poland) and to show their deposition ratios in human airways. Additionally, meteorological data was used to conclude the probable influence of atmospheric conditions on the variability of the PM mass concentrations in different periods of the year. Data regarding the elemental composition of size-fractionated PM in various regions of Poland was also presented. The determination of the selected metals in PM-fractionated samples (PM1, PM2.5, and PM10) was performed in two periods – the heating and non-heating season. It was found that metals were primarily associated with particles less than 1 µm, however, the PM size distribution had shown bi-modal characteristics and the maxima of metal mass distribution occurred in both submicron and fine modes. High PM1 mass loadings, observed especially in the non-heating season were probably due to an influx of fine and even smaller particles from traffic sources. Metals distributions as well as respiratory deposition ratios for PM-bound elements calculated using the MPPD V2.11 model favored nasal and head deposition. The overall mass deposition of metals in the respiratory tract of adults was: 0.39 (Head region, H); 0.07 (Tracheobronchial region, TB); 0.16 (Pulmonary region, P) respectively. No matter the season, the highest inhalable concentrations of metals were found for Cu, Mn, Cr and Pb. Only Cr and Pb are classified as carcinogenic and mutagenic (according to IARC classification).
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.