Surface ozone changes during the COVID-19 outbreak in China: An insight into the pollution characteristics and formation regimes of ozone in the cold season
Lei Tong, Yu Liu, Yang Meng, Xiaorong Dai, Leijun Huang, Wenxian Luo, Mengrong Yang, Yong Pan, Jie Zheng, Hang Xiao
{"title":"Surface ozone changes during the COVID-19 outbreak in China: An insight into the pollution characteristics and formation regimes of ozone in the cold season","authors":"Lei Tong, Yu Liu, Yang Meng, Xiaorong Dai, Leijun Huang, Wenxian Luo, Mengrong Yang, Yong Pan, Jie Zheng, Hang Xiao","doi":"10.1007/s10874-022-09443-2","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>The countrywide lockdown in China during the COVID-19 pandemic provided a natural experiment to study the characteristics of surface ozone (O<sub>3</sub>). Based on statistical analysis of air quality across China before and during the lockdown, the tempo-spatial variations and site-specific formation regimes of wintertime O<sub>3</sub> were analyzed. The results showed that the O<sub>3</sub> pollution with concentrations higher than air quality standards could occur widely in winter, which had been aggravated by the emission reduction during the lockdown. On the national scale of China, with the significant decrease (54.03%) in NO<sub>2</sub> level from pre-lockdown to COVID-19 lockdown, the maximum daily 8-h average concentration of O<sub>3</sub> (MDA8h O<sub>3</sub>) increased by 39.43% from 49.05 to 64.22 μg/m<sup>3</sup>. This increase was comprehensively contributed by attenuated NO<sub>x</sub> suppression and favorable meteorological changes on O<sub>3</sub> formation during the lockdown. As to the pollution states of different monitoring stations, surface O<sub>3</sub> responded oppositely to the consistent decreased NO<sub>2</sub> across China. The O<sub>3</sub> levels were found to increase in the northern and central regions, but decrease in the southern region, where the changes in both meteorology (e.g. temperature drops) and precursors (reduced emissions) during the lockdown had diminished local O<sub>3</sub> production. The spatial differences in NO<sub>x</sub> levels generally dictate the site-specific O<sub>3</sub> formation regimes in winter, with NO<sub>x</sub>-titration/VOCs-sensitive regimes being dominant in northern and central China, while VOCs-sensitive/transition regimes being dominant in southern China. These findings highlight the influence of NO<sub>x</sub> saturation levels on winter O<sub>3</sub> formation and the necessity of VOCs emission reductions on O<sub>3</sub> pollution controls.</p></div></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 1","pages":"103 - 120"},"PeriodicalIF":3.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-022-09443-2.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09443-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract
The countrywide lockdown in China during the COVID-19 pandemic provided a natural experiment to study the characteristics of surface ozone (O3). Based on statistical analysis of air quality across China before and during the lockdown, the tempo-spatial variations and site-specific formation regimes of wintertime O3 were analyzed. The results showed that the O3 pollution with concentrations higher than air quality standards could occur widely in winter, which had been aggravated by the emission reduction during the lockdown. On the national scale of China, with the significant decrease (54.03%) in NO2 level from pre-lockdown to COVID-19 lockdown, the maximum daily 8-h average concentration of O3 (MDA8h O3) increased by 39.43% from 49.05 to 64.22 μg/m3. This increase was comprehensively contributed by attenuated NOx suppression and favorable meteorological changes on O3 formation during the lockdown. As to the pollution states of different monitoring stations, surface O3 responded oppositely to the consistent decreased NO2 across China. The O3 levels were found to increase in the northern and central regions, but decrease in the southern region, where the changes in both meteorology (e.g. temperature drops) and precursors (reduced emissions) during the lockdown had diminished local O3 production. The spatial differences in NOx levels generally dictate the site-specific O3 formation regimes in winter, with NOx-titration/VOCs-sensitive regimes being dominant in northern and central China, while VOCs-sensitive/transition regimes being dominant in southern China. These findings highlight the influence of NOx saturation levels on winter O3 formation and the necessity of VOCs emission reductions on O3 pollution controls.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.