Ahamed Ibrahim S.N., Sri Shalini S, Ramachandran A, Palanivelu K
{"title":"Spatio-temporal variation and sensitivity analysis of aerosol particulate matter during the COVID-19 phase-wise lockdowns in Indian cities","authors":"Ahamed Ibrahim S.N., Sri Shalini S, Ramachandran A, Palanivelu K","doi":"10.1007/s10874-021-09428-7","DOIUrl":"10.1007/s10874-021-09428-7","url":null,"abstract":"<div><p>At the pandemic of COVID-19, the movement of business and other non-essential activities were majorly restricted at the end of March 2020 in India and continued in different lockdown phases until June 2020. By categorically, studying sensitivity towards anthropogenic factors with other environmental implications in urban Indian cities during phase-wise lockdown scenarios will pave the way for a refined Clean Air Programme (CAP). In this study, the aerosol particulate matter variations between the lockdown phases in both spatial and temporal scales have been explored along with cities exceeding national ambient air quality (NAAQ) standards covering different geographical regions of India for their air quality level. The results of the spatial pattern of Copernicus Atmosphere Monitoring System (CAMS) near-real-time data showed a negative change both in Aerosol Optical Depth (AOD) (-0.2 to 0.1) and black carbon AOD (bcAOD) (-0.9 to -0.75). The changes were evident in successive phases of lockdown with an overall AOD reduction of about 70–90%. Southern urban cities showed a significant impact of mobile sources from temporal analysis than other cities. Principal Component Analysis (PCA) for effects of pollutants by anthropogenic factors (mobile and point source) and meteorological factors (wind speed, wind direction, solar radiation, relative humidity) revealed the two significant driving factors. PM reduction was about 50–70%, predominantly due to anthropogenic factors. The factor analysis revealed the influence of meteorological factors between the major urban cities (Delhi, Kolkata, Mumbai, Chennai, Bengaluru, and Hyderabad). Cities that exceed NAAQ standard performed well during phase-wise lockdowns, exceptional to cities in Gangetic plain. This study helps to frame region-specific strategic action plans for the CAP.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"39 - 66"},"PeriodicalIF":2.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09428-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5087544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wet deposition of atmospheric inorganic reactive nitrogen (Nr) across an urban-industrial-rural transect of Nr emission hotspot (India)","authors":"Moh Naseem, U. C. Kulshrestha","doi":"10.1007/s10874-021-09425-w","DOIUrl":"10.1007/s10874-021-09425-w","url":null,"abstract":"<div><p>The present study comprehensively reports the simultaneous measurement of wet deposition of total inorganic nitrogen (TIN; which is the sum of the NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N) at three different sites in Nr emission hotspot of Indo-Gangetic plain (IGP) over a year-long temporal scale from October 2017 to September 2018. At rural Meetli (MTL) site, urban Baraut (BRT) site and industrial Loni (LNI) site, the annual wet deposition of NH<sub>4</sub><sup>+</sup>-N was estimated as 21.87, 19.48 and 7.43 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively; the annual wet deposition NO<sub>3</sub><sup>−</sup>-N was estimated as 12.96, 12.17 and 4.44 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively; and the annual wet deposition of TIN was estimated as 34.83, 31.64 and 11.87 kg N ha<sup>−1</sup> yr<sup>−1</sup>, respectively. NH<sub>4</sub><sup>+</sup>-N was dominantly contributing species in annual, monsoon and non-monsoon-time wet deposition of TIN at all sites. The spatial gradient (variability) in percent contribution of NH<sub>4</sub><sup>+</sup> to total annual volume-weighted mean (VWM) concentration of all analyte ions was observed as MTL (43.23%) > BRT (37.90%) > LNI (30%). On the other hand, the spatial gradient in percent contribution of NO<sub>3</sub><sup>−</sup> to total annual VWM concentration of all analyte ions was observed as MTL (7.45%) > BRT (6.89%) > LNI (5.32%). The extremely narrow range of NH<sub>4</sub><sup>+</sup>-N/NO<sub>3</sub><sup>−</sup>-N ratios (ranging from 1.60 at BRT site to 1.69 at LNI site) showed the approximately equal relative abundance of oxidized and reduced nitrogen (N) deposition across all sites. Inferences from enrichment factor analysis, principal component analysis and Pearson’s correlation coefficient analysis suggested that across all sites, virtually all NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N depositions were originated anthropogenically. The annual wet deposition of TIN measured in this study showed ≥ 6865%, ≥ 6228% and ≥ 2274% increment than the natural N deposition rate at MTL, BRT and LNI site, respectively. These empirically measured annual wet depositions of TIN also emanated theoretical transgression of critical N load threshold across all sites therefore signifying probable undermining of long-term elastic stability and resilience of ecosystems against stressor in the study domain.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"271 - 304"},"PeriodicalIF":2.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09425-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5026933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shui-Ping Wu, Xiang Li, Yang Gao, Mei-Jun Cai, Chao Xu, James J. Schwab, Chung-Shin Yuan
{"title":"Size distributions and dry deposition fluxes of water-soluble inorganic nitrogen in atmospheric aerosols in Xiamen Bay, China","authors":"Shui-Ping Wu, Xiang Li, Yang Gao, Mei-Jun Cai, Chao Xu, James J. Schwab, Chung-Shin Yuan","doi":"10.1007/s10874-021-09427-8","DOIUrl":"10.1007/s10874-021-09427-8","url":null,"abstract":"<div><p>Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>, and TSP were 14.8 ± 5.6, 21.1 ± 9.0, 35.4 ± 14.2 μg m<sup>−3</sup>, and 45.2 ± 21.3 μg m<sup>−3</sup>, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3 ± 3.3, 2.1 ± 1.2, 3.3 ± 1.5, and 1.6 ± 0.8 μg m<sup>−3</sup> in PM<sub>1</sub>, PM<sub>1-2.5</sub>, PM<sub>2.5–10</sub>, and PM<sub>>10</sub>, respectively. In addition, pronounced seasonal variations of WSIIs in PM<sub>1</sub> and PM<sub>1-2.5</sub> were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO<sub>4</sub><sup>2−</sup>, NH<sub>4</sub><sup>+</sup> and K<sup>+</sup> were consistently present in the submicron particles while Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> and Cl<sup>−</sup> mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO<sub>3</sub><sup>−</sup> was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH<sub>4</sub>NO<sub>3</sub>. For NH<sub>4</sub><sup>+</sup> and SO<sub>4</sub><sup>2−</sup>, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO<sub>3</sub>–N was lower than NH<sub>4</sub>–N, the dry deposition flux of NO<sub>3</sub>–N (35.77 ± 24.49 μmol N m<sup>−2</sup> d<sup>−1</sup>) was much higher than that of NH<sub>4</sub>–N (10.95 ± 11.89 μmol N m<sup>−2</sup> d<sup>−1</sup>), mainly due to the larger deposition velocities of NO<sub>3</sub>–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m<sup>−2</sup> d<sup>−1</sup>, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"17 - 38"},"PeriodicalIF":2.0,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09427-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4478433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of light intensity on the production of VSLs from the marine diatom Ditylum brightwellii","authors":"Minami Abe, Yuki Okuda, Shinya Hashimoto","doi":"10.1007/s10874-021-09426-9","DOIUrl":"10.1007/s10874-021-09426-9","url":null,"abstract":"<div><p>Very short-lived substances (VSLs) are known to play an important role in ozone depletion in the troposphere and stratosphere. Environmental factors that influence the production of these compounds by marine phytoplankton, which is known to be the source of these compounds in open oceans, have not yet been well studied. Here we examined the effects of light intensity on the production of VSLs by the marine diatom <i>Ditylum brightwellii</i>. Bromodichloromethane (CHBrCl<sub>2</sub>), dibromochloromethane (CHBr<sub>2</sub>Cl), bromoform (CHBr<sub>3</sub>), chloroform (CHCl<sub>3</sub>), and dibromomethane (CH<sub>2</sub>Br<sub>2</sub>) in cultures incubated under full spectrum daylight intensities of 30, 60, and 120 µmol photons m<sup>− 2</sup> s<sup>− 1</sup> were measured using purge and trap gas chromatograph–mass spectrometry. Phytoplankton growth was monitored by measuring chlorophyll-<i>a</i> concentration and cell density. Both the chlorophyll-<i>a</i> concentration (the cell density) and the production rates of VSLs increased with increasing light intensity. The maximum production rates of CHBrCl<sub>2</sub>, CHBr<sub>2</sub>Cl, CHBr<sub>3</sub>, CHCl<sub>3</sub>, and CH<sub>2</sub>Br<sub>2</sub> were observed during the exponential or stationary phase, with the exception of CH<sub>2</sub>Br<sub>2</sub> incubated under 30 µmol photons m<sup>− 2</sup> s<sup>− 1</sup>. The chlorophyll <i>a</i>-normalized (or cell-normalized) production rates of VSLs increased with increasing light intensity, e.g., the maximum of chlorophyll <i>a</i>-normalized production rates of CHCl<sub>3</sub> under light intensities of 30, 60 and 120 µmol photons m<sup>− 2</sup> s<sup>− 1</sup> were 0.06, 0.46 and 1.84 µmol (g chlorophyll <i>a</i>) <sup>−1</sup> day<sup>− 1</sup>, respectively. Our results suggest that marine diatoms are one of the significant sources of VSLs and that light intensity is a significant factor in estimating VSLs emissions from the open ocean.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 1","pages":"1 - 16"},"PeriodicalIF":2.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-021-09426-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4705977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seasonal characteristics and sources of carbonaceous components and elements of PM10 (2010–2019) in Delhi, India","authors":"Sudhir Kumar Sharma, Rubiya Banoo, Tuhin Kumar Mandal","doi":"10.1007/s10874-021-09424-x","DOIUrl":"10.1007/s10874-021-09424-x","url":null,"abstract":"<div><p>In this study we present the seasonal chemical characteristics and potential sources of PM<sub>10</sub> at an urban location of Delhi, India during 2010˗2019. The concentrations of carbonaceous aerosols [organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC)] and elements (Al, Fe, Ti, Cu, Zn, Mn, Pb, Cr, F, Cl, Br, P, S, K, As, Na, Mg, Ca, B, Ni, Mo, V, Sr, Zr and Rb) in PM<sub>10</sub> were estimated to explore their possible sources. The annual average concentration (2010–2019) of PM<sub>10</sub> was computed as 227 ± 97 µg m<sup>−3</sup> with a range of 34˗734 µg m<sup>−3</sup>. The total carbonaceous aerosols in PM<sub>10</sub> was accounted for 22.5% of PM<sub>10</sub> mass concentration, whereas elements contribution to PM<sub>10</sub> was estimated to be 17% of PM<sub>10</sub>. The statistical analysis of OC <i>vs.</i> EC and OC <i>vs.</i> WSOC of PM<sub>10</sub> reveals their common sources (biomass burning and/or fossil fuel combustion) during all the seasons. Enrichment factors (EFs) of the elements and the relationship of Al with other crustal metals (Fe, Ca, Mg and Ti) of PM<sub>10</sub> indicates the abundance of mineral dust over Delhi. Principal component analysis (PCA) extracted the five major sources [industrial emission (IE), biomass burning + fossil fuel combustion (BB + FFC), soil dust, vehicular emissions (VE) and sodium and magnesium salts (SMS)] of PM<sub>10</sub> in Delhi, India. Back trajectory and cluster analysis of airmass parcel indicate that the pollutants approaching to Delhi are mainly from Pakistan, IGP region, Arabian Sea and Bay of Bengal.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"251 - 270"},"PeriodicalIF":2.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09424-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5005130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetics for the photo-chemical degradation of Methyl butyrate in presence of Cl atoms and OH radicals","authors":"Ramya Cheramangalath Balan, Rajakumar Balla","doi":"10.1007/s10874-021-09417-w","DOIUrl":"10.1007/s10874-021-09417-w","url":null,"abstract":"<div><p>The Cl/OH initiated temperature dependent photo-oxidative reaction kinetics of methyl butyrate (MB) were examined using a relative rate (RR) technique. Gas chromatography with flame ionization and mass spectrometric detection were used to monitor the concentration of the reactants and to identify the products. The temperature dependent kinetics of MB with Cl atoms were measured with respect to the reaction of Cl with C<sub>2</sub>H <sub>6</sub> and C<sub>2</sub>H<sub>4</sub>. The temperature dependent kinetics for the reaction of MB with OH radicals were measured using n- propanol and iso -propanol as references. The obtained rate coefficients for the Cl and OH reactions with MB are, k Cl(Expt) (T) = [(7.76 ± 0.47) × 10 <sup>−11</sup>] exp [(10.31 ± 0.20)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Expt) (T) = [(4.32 ± 0.21) × 10 <sup>−12</sup>] exp [-(25.26 ± 0.39)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> respectively. Dual level direct dynamics were used to perform the computational calculations to further elucidate the mechanisms over the studied temperature range. The rate coefficients for H-abstraction reactions were computed using Canonical Variational Transition State Theory with Small Curvature Tunneling (CVT/SCT) with Interpolated Single Point Energies (ISPE) method. The rate coefficients over the studied temperature range yielded the Arrhenius equations: k Cl(Theory) (200–400 K) = [(4.05 ± 0.54) × 10<sup>–11</sup>] exp [-(2.80 ± 0.11)/T] cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> and k OH(Theory) (200–400 K) = [(1.96 ± 0.68) × 10 -11] exp [-(384 ± 38)/T] cm<sup>3</sup> molecule <sup>−1</sup> s <sup>−1</sup>. Possible degradation mechanisms for the reactions are proposed based on the observed products. Thermo-chemical parameters, ozone formation potential, branching ratios, and the atmospheric lifetime of MB are calculated to understand the fate of MB in the atmosphere.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"219 - 238"},"PeriodicalIF":2.0,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09417-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4861276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbon isotopic signatures of carbonyls from roadside air observation","authors":"S.J. Guo","doi":"10.1007/s10874-021-09423-y","DOIUrl":"10.1007/s10874-021-09423-y","url":null,"abstract":"<div><p>In this work, isotopic effects of carbonyls were evaluated during the simulation sampling of gaseous carbonyls by using a carbon isotope method developed, and then variation characteristics of carbon isotopic compositions were investigated for three dominant carbonyls including formaldehyde, acetaldehyde and acetone in the roadside air of Nanning for the first time. A small difference in δ<sup>13</sup>C values (0.04 to 0.50 ‰) were observed between the calculated and measured values of carbonyl-derivatives, indicating that the effect on carbon isotopic fractionation could hardly occurred in the simulation sampling of gaseous carbonyls. The roadside air measurements showed that <span>({delta }^{13})</span>C values of formaldehyde, acetaldehyde and acetone were –36.02 ‰ to –31.18 ‰, –35.35 ‰ to –32.01 ‰ and –30.45 ‰ to –29.09 ‰, respectively. Further correlation of the measured <span>({delta }^{13})</span>C values was good for formaldehyde, acetaldehyde and acetone (R<sup>2</sup> = 0.6275–0.7755), indicating that their similar sources could be the direct vehicular emission or indirect productions from precursors such as hydrocarbons. Particularly, formaldehyde, acetaldehyde and acetone in the roadside air were all enriched in the early afternoon by round 0.5–6 ‰ in <sup>13</sup>C compared to other sampling durations, which was likely due to the contributions from the positive photo-oxidation productions of hydrocarbons. Finally, it was found that all measured <span>({delta }^{13})</span>C values (–36.5 ‰ to –29.0 ‰) agreed with the forecasted <span>({delta }^{13})</span>C range (–43.0 ‰ to –26.0 ‰) according to the <sup>13</sup>C mass balance of carbonyls and their precursors such as hydrocarbons, indirectly confirming such positive productions in the roadside air.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 4","pages":"239 - 250"},"PeriodicalIF":2.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09423-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5016525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aerosol removal coefficients based on 7Be, 210Pb, and 210Po radionuclides in the urban atmosphere","authors":"Magdalena Długosz-Lisiecka","doi":"10.1007/s10874-021-09422-z","DOIUrl":"10.1007/s10874-021-09422-z","url":null,"abstract":"<div><p>In this study, the aerosol removal coefficients based on <sup>7</sup>Be, <sup>210</sup>Pb and <sup>210</sup>Po radionuclides in the urban air, in Lodz, Poland, were investigated over 3 years, between May 2014 and December 2017. Results representing the summer/warm and winter/cold seasons were applied to quantity and quality estimates of aerosol removal processes. The values for the removal processes were closely dependent on the meteorological conditions; therefore, a set of nine meteorological parameters was employed in the analysis. The multiple regression method was applied to explain the relationship between the removal coefficients of aerosols and independent factors identified using Principal Component Analysis.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 3","pages":"209 - 218"},"PeriodicalIF":2.0,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09422-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4732436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of seasonal variation of PM2.5 concentration associated with meteorological parameters at residential sites in Delhi, India","authors":"Bhupendra Pratap Singh, Deepak Singh, Krishan Kumar, Vinod Kumar Jain","doi":"10.1007/s10874-021-09419-8","DOIUrl":"10.1007/s10874-021-09419-8","url":null,"abstract":"<div><p>The seasonal variation of particulate matter and its relationship with meteorological parameters were measured at five different residential sites in Delhi. Sampling was carried out for one year including all three seasons (summer, monsoon, and winter). The yearly average concentration of particulate matter (PM<sub>2.5</sub>) was 135.16 ± 41.34 µg/m<sup>3</sup>. The highest average values were observed in winter (208.44 ± 43.67 µg/m<sup>3</sup>) and the lowest during monsoon season (80.29 ± 39.47 µg/m<sup>3</sup>). The annual average concentration of PM<sub>2.5</sub> was found to be the highest at the Mukherjee Nagar site (242.16 µg/m<sup>3</sup> ) during the winter and lowest at (Jawaharlal Nehru University) JNU (35.65 µg/m<sup>3</sup>) during the monsoon season. The strongest correlation between PM mass and a meteorological parameter was a strong negative correlation with temperature (R2=0.55). All other parameters were weakly correlated (R2<0.2) with PM mass.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 3","pages":"161 - 176"},"PeriodicalIF":2.0,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09419-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4810051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Source identification and exposure assessment to PM10 in the Eastern Carpathians, Romania","authors":"Réka Boga, Ágnes Keresztesi, Zsolt Bodor, Szende Tonk, Róbert Szép, Miruna Mihaela Micheu","doi":"10.1007/s10874-021-09421-0","DOIUrl":"10.1007/s10874-021-09421-0","url":null,"abstract":"<div><p>Observations of particulate matter less than 10 µm (PM<sub>10</sub>) were conducted from January to December in 2015 in the Ciuc basin, Eastern Carpathians, Romania. Daily concentrations of PM<sub>10</sub> ranged from 10.90 to 167.70 µg/m<sup>3</sup>, with an annual mean concentration of 46.31 µg/m<sup>3</sup>, which is higher than the European Union limit of 40 µg/m<sup>3</sup>. Samples were analyzed for a total of 21 elements. O, C and Si were the most abundant elements accounting for about 85% of the PM<sub>10</sub> mass. Source identification showed that the elemental composition of PM<sub>10</sub> is represented by post volcanic activity, crustal origin, and anthropogenic sources, caused by the resuspension of crustal material, sea salt and soil dust. The average PM<sub>10</sub> composition was 72.10% soil, 20.92% smoke K, 13.84% salt, 1.53% sulfate and 1.02% organic matter. The back-trajectory analysis showed that the majority of PM<sub>10</sub> pollution comes from the West, Southwest and South.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"78 2","pages":"77 - 97"},"PeriodicalIF":2.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-021-09421-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4562258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}