Estimation of aerosol acidity at a suburban site of Nanjing using machine learning method

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Miaomiao Tao, Ying Xu, Jiaxing Gong, Qingyang Liu
{"title":"Estimation of aerosol acidity at a suburban site of Nanjing using machine learning method","authors":"Miaomiao Tao,&nbsp;Ying Xu,&nbsp;Jiaxing Gong,&nbsp;Qingyang Liu","doi":"10.1007/s10874-022-09433-4","DOIUrl":null,"url":null,"abstract":"<div><p>Aerosol acidity is found to exert negative effects on ecosystem diversity and architectural appearance. Current analytical technology is unable to measure in-situ aerosol acidity (i.e., pH value) of ambient fine particle due to the absence of appropriate pH electrodes. Thermodynamic modeling methods including ISORROPIA II and Extended Aerosol Inorganics Model Version IV (E-AIM V) are mostly used in the estimation of in-situ aerosol acidity with the inputs of water soluble ions worldwide. This study proposes a flexible method with the aid of multilayer perceptron (MLP) neural network analysis to estimate in-situ aerosol acidity of ambient fine particle (&lt; 2.5 μm in aerodynamic diameter or PM<sub>2.5</sub>) with the inputs of water soluble ions (i.e., Cl<sup>−</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>), gaseous air pollutants (i.e., CO, NO<sub>2</sub>, SO<sub>2</sub>) and meteorological parameters (i.e., humidity and temperature). The dataset consists of ambient fine particles collected across four individual sampling periods in the autumn and winter of 2019 and 2020 at a suburban site of Nanjing. The pH values of ambient fine particle were found to be ranging from 2.0 to 4.0 estimated by E-AIM model. Levels of pH estimated by MLP neural network analysis agreed well with pH values estimated by E-AIM model with R<sup>2</sup> value of 0.98.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 2","pages":"141 - 151"},"PeriodicalIF":3.0000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09433-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Aerosol acidity is found to exert negative effects on ecosystem diversity and architectural appearance. Current analytical technology is unable to measure in-situ aerosol acidity (i.e., pH value) of ambient fine particle due to the absence of appropriate pH electrodes. Thermodynamic modeling methods including ISORROPIA II and Extended Aerosol Inorganics Model Version IV (E-AIM V) are mostly used in the estimation of in-situ aerosol acidity with the inputs of water soluble ions worldwide. This study proposes a flexible method with the aid of multilayer perceptron (MLP) neural network analysis to estimate in-situ aerosol acidity of ambient fine particle (< 2.5 μm in aerodynamic diameter or PM2.5) with the inputs of water soluble ions (i.e., Cl, NO3, SO42−, Na+, NH4+, K+, Mg2+, Ca2+), gaseous air pollutants (i.e., CO, NO2, SO2) and meteorological parameters (i.e., humidity and temperature). The dataset consists of ambient fine particles collected across four individual sampling periods in the autumn and winter of 2019 and 2020 at a suburban site of Nanjing. The pH values of ambient fine particle were found to be ranging from 2.0 to 4.0 estimated by E-AIM model. Levels of pH estimated by MLP neural network analysis agreed well with pH values estimated by E-AIM model with R2 value of 0.98.

利用机器学习方法估算南京郊区某站点气溶胶酸度
气溶胶酸度对生态系统多样性和建筑外观有负面影响。由于没有合适的pH电极,目前的分析技术无法测量环境细颗粒的气溶胶酸度(即pH值)。isoropia II和扩展气溶胶无机物模型IV (E-AIM V)等热力学建模方法在全球范围内主要用于估算具有水溶性离子输入的原位气溶胶酸度。本研究提出了一种基于多层感知器(MLP)神经网络分析的灵活方法,在水溶性离子(Cl−、NO3−、SO42−、Na+、NH4+、K+、Mg2+、Ca2+)、气态空气污染物(CO、NO2、SO2)和气象参数(湿度和温度)的输入下,估算环境细颗粒物(空气动力学直径< 2.5 μm或PM2.5)的现场气溶胶酸度。该数据集包括2019年和2020年秋冬四个单独采样期在南京郊区收集的环境细颗粒。E-AIM模型估算的环境细颗粒物pH值在2.0 ~ 4.0之间。MLP神经网络估算的pH值与E-AIM模型估算的pH值吻合较好,R2值为0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信