{"title":"Geothermo-mechanical energy conversion using shape memory alloy heat engine","authors":"Abubakar R. A., Nuhu I.","doi":"10.1186/s40712-024-00185-5","DOIUrl":"10.1186/s40712-024-00185-5","url":null,"abstract":"<div><p>The shift towards renewable energy sources like geothermal energy has become desirable due to the recurrent energy crisis and global warming challenges influenced by fossil fuels. Geothermo-mechanical energy conversion using shape memory alloy (SMA) heat engines presents a novel and sustainable approach for harnessing geothermal energy. Shape memory alloys, known for their ability to undergo reversible phase transformations driven by temperature changes, are ideal for thermal-to-mechanical energy conversion. This paper explores the design and performance of an SMA heat engine that utilizes geothermal heat sources to drive mechanical work. The engine operates by cycling between the high-temperature geothermal environment and a cooler sink, exploiting the shape memory effect to generate mechanical motion. By integrating geothermal energy and SMA technology, this system offers a potential solution for renewable energy generation, with applications in remote or off-grid locations. The paper also investigates output power and the thermodynamic efficiency. A model is formulated and the engine behavior is simulated. A series of experiments are conducted for engine output power and efficiency. The model is compared to the experimental data for validation. The engine developed a maximum power of 3.5, 8.5, and 11.5 watts at 60, 80, and 90 °C respectively. The proposed SMA-based geothermo-mechanical energy conversion system offers a promising solution for efficient, reliable, and scalable geothermal energy harvesting. This research contributes to the development of innovative, efficient geothermal energy conversion technologies, supporting global renewable energy goals and reducing greenhouse gas emissions. This innovative energy conversion mechanism could play a key role in the future of sustainable power generation.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00185-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Graphitic carbon nitride-modified cerium ferrite: an efficient photocatalyst for the degradation of ciprofloxacin, ampicillin, and erythromycin in aqueous solution","authors":"Adewale Adewuyi, Rotimi A. Oderinde","doi":"10.1186/s40712-024-00183-7","DOIUrl":"10.1186/s40712-024-00183-7","url":null,"abstract":"<div><p>Incomplete removal of antibiotics by most known wastewater treatment plants is a global challenge. Therefore, graphitic carbon nitride-modified cerium ferrite (CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub>) was synthesized to remove antibiotics (ampicillin, ciprofloxacin and erythromycin) from water. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> showed activity in the visible light with a Tauc plot revealing the bandgap energy (2.46 eV). The scanning electron micrograph (SEM) result revealed the surface of CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> to be heterogeneous, while the transmission electron micrograph (TEM) image confirmed a flaky with rod and oval shaped surface (average particle size of 42.22 nm). CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> exhibited a 100% removal of all the studied antibiotics from aqueous solution in a photocatalytic degradation that is described by pseudo-1st-order kinetics. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> demonstrated a high regeneration capacity, which is above 90% at the 12th cycle of treatment without any observable changes in its phase structure which suggests a promising chemical stability and reusability. CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> compared favourably with some selected antibiotic degradable photocatalysts suggesting the economic viable of CeFe<sub>2</sub>O<sub>4</sub>@g-C<sub>3</sub>N<sub>4</sub> as photocatalyst for the purification of antibiotics-contaminated water.\u0000</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00183-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of glass sealants for proton conducting ceramic cells: materials, concepts and challenges","authors":"Xanthi Georgolamprou, Ilaria Ritucci, Stéven Pirou, Ragnar Kiebach","doi":"10.1186/s40712-024-00184-6","DOIUrl":"10.1186/s40712-024-00184-6","url":null,"abstract":"<div><p>In this study, we have successfully developed and tested sealing concepts for symmetrical, planar proton-conducting ceramic cells (PCCCs). Three glass sealants from the field of solid oxide cells were investigated as potential compatible sealing materials for PCCCs. The most promising results were obtained with a SiO<sub>2</sub>-MgO-CaO-Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-ZrO<sub>2</sub>-B<sub>2</sub>O<sub>3</sub> glass, which provided a dense, crack-free sealant between the proton-conducting ceramic cells and the Al<sub>2</sub>O<sub>3</sub>-coated ferritic steels. During the sealing process, a reaction layer between the interface of the BaCe<sub>0.2</sub>Zr<sub>0.7</sub>Y<sub>0.1</sub>O<sub>3-δ</sub> contained in the PCCCs and the glass–ceramic, occurred. Here, we propose a reaction mechanism for this interaction and discuss its impact on potential applications. Moreover, next to evaluating potential glass sealants, we have successfully designed and demonstrated a new sealing geometry that prevents a potential gas crossover in the symmetrical proton-conducting ceramic cell.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00184-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Hosein Beheshti, Ali Khavanin, Mostafa Jafarizaveh, Akram Tabrizi
{"title":"A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse","authors":"Mohammad Hosein Beheshti, Ali Khavanin, Mostafa Jafarizaveh, Akram Tabrizi","doi":"10.1186/s40712-024-00173-9","DOIUrl":"10.1186/s40712-024-00173-9","url":null,"abstract":"<div><p>Natural materials are becoming a reliable alternative to traditional artificial materials used in sound absorption insulation. The present study was conducted to investigate the acoustic insulation of micro-perforated panel (MPP) based on sugarcane fibers and bagasse as an available and environmentally friendly material. The absorption properties of single- and double-leaf natural micro-perforated panels (MPP) made of bagasse and also nonnatural MPPs made of Plexiglass were measured using an impedance tube based on ISO 10534–2. Then the effect of bagasse and sugarcane fibers composite on the air gap of MPP was investigated. The results showed the peak sound absorption of the bagasse composite is in the range of 1000 to 2000 Hz, and the sugarcane fiber composite has a higher sound absorption coefficient than the bagasse composite. Also, natural MPPs have a higher absorption coefficient than nonnatural MPPs at all frequencies, and as the panel thickness increases, the peak absorption coefficient shifts to lower frequencies. The peak sound absorption coefficient of double-leaf MPPs made of bagasse is 76%, in the range of 160 to 200 Hz. Using sugarcane fiber composite in the air gap of single- and double-leaf natural MPPs causes the absorption peak to shift to frequencies below 100 Hz. According to the results, natural MPPs have a high sound absorption coefficient at low frequencies. These panels can control sounds with much lower frequencies, especially in a double layer and along with cane fiber composite in their air gap.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00173-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niranjan Patra, Prathipati Ramesh, Vaishnavi Donthu, Akil Ahmad
{"title":"Biopolymer-based composites for sustainable energy storage: recent developments and future outlook","authors":"Niranjan Patra, Prathipati Ramesh, Vaishnavi Donthu, Akil Ahmad","doi":"10.1186/s40712-024-00181-9","DOIUrl":"10.1186/s40712-024-00181-9","url":null,"abstract":"<div><h2>Abstract\u0000</h2><div><p>Over the past decade, biopolymers made from renewable resources like plants, algae, seashell waste, and seaweed have become increasingly popular as industries strive to reduce their environmental pollution without compromising socioeconomic growth. Biopolymers are often regarded as a significant alternative to conventional materials due to their low weight, great strength, stiffness, biostability, and non-toxicity. Therefore, industries are beginning to adopt the use of biopolymers, including those dealing with packaging, agriculture, automobiles, healthcare, as well as energy harvesting. Supercapacitors and batteries are two examples of electrochemical devices for energy storage that can be made using bespoke biopolymers and their composites. Although biopolymers’ potential uses are restricted, they are nevertheless useful when combined with other materials to create composites. This boosts the electrochemical efficiency of the biologically active molecules and also enhances their inherent physical features. This review focuses on recent developments, specifically the use of diverse biopolymers and composites for batteries and supercapacitor applications, followed by future perspectives.</p></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00181-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three new reduced forms of synthesized Schiff bases as potent anti-corrosion inhibitors for carbon steel in artificial seawater","authors":"Hojat Jafari, Elham Ameri, Fariba Soltanolkottabi, Avni Berisha","doi":"10.1186/s40712-024-00177-5","DOIUrl":"10.1186/s40712-024-00177-5","url":null,"abstract":"<div><p>As part of the development of a new organic entity, we synthesized three new reduced forms of Schiff bases named 2,2’-(((2,2-dimethylpropane-1,3-diyl)bis(azanediyl)bis(methylene)disphenol (I1), 4,4’-(((2,2-dimethylpropane-1,3-diyl)bis (azanediyl)bis(methylene)bis(2-methoxyphenol) (I2), and 6,6’-(((2,2-dimethylpropane-1,3-diyl) bis(azanediyl)bis(methylene)bis(2-methoxyphenol) (I3). In order to develop new organic ligands to inhibit steel corrosion in 1M HCl solution, various electrochemical methods, such as electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP), along with surface visualization through atomic force microscopy (AFM), were employed. PDP results revealed excellent inhibition by compound I3 (71%) at a concentration of 1 mg/L. These findings were supported by the observation of a protective layer formation during prolonged immersion of steel in a corrosive solution, with or without inhibitors. In addition to gaining insights into the interaction mechanism and adsorption mode, density functional theory, Monte Carlo, and molecular dynamic simulations were conducted, revealing valuable information about the interaction of the inhibitors with the steel surface. Average surface roughness (<i>R</i><sub><i>a</i></sub>) values obtained for the artificial seawater in the absence and presence of inhibitor are 887 nm for blank, 195 nm for I1, 158 nm for I2, and 105 nm for I3.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00177-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Vanitha, Rithikaa Thanigaiselvan, M. Manivannan, R. Jeyalakshmi, S. N. Megha, M. Kesavan
{"title":"Expounding the application of nano and micro silica as a complementary additive in metakaolin phosphate geopolymer for ceramic applications—micro and nanoscale structural investigation","authors":"N. Vanitha, Rithikaa Thanigaiselvan, M. Manivannan, R. Jeyalakshmi, S. N. Megha, M. Kesavan","doi":"10.1186/s40712-024-00176-6","DOIUrl":"10.1186/s40712-024-00176-6","url":null,"abstract":"<div><p>Metakaolin phosphate geopolymers comprising poly-phospho-siloxo units are known for their structural performance, additionally advancing their microstructure with the transformation of crystalline berlinite phases at elevated temperatures. The intrinsic reaction of Al of metakaolin in the acid exploited, but the reaction of secondary silica phases is limitedly known. Metakaolin as a primary precursor (M) with the addition of 2% and 5% of nano silica (MS2 and MS5) and micro silica (MM2 and MM5) cast using 8-M phosphoric acid was cured at 80 °C. To enhance the utilization of geopolymer in any high-temperature applications, the structural transformations were studied after heating to various temperatures (200, 400, 600 and 800 °C) by XRD, Raman, TGA-DTA, SEM, XPS, FTIR and MAS-NMR. Sample M attained a strength of 46.2 MPa enhanced to 63.6 MPa in MS5 and 54.2 MPa in MM5. This can be ascribed from the transformation of Si–O–Al–O–Si into Si–O–Al–O–P from Raman bands. Comparing the chemical shift of Al (IV) to control, micro silica addition shifts the signal to a lower field (53 to 50 ppm) related to the increase of the number of Al-connected Si to give a tougher network. Nanoindentation is visualized from hardness and elasticity, and the corresponding values are 1.4 to 2.1 GPa and 0.8 to 1.4 GPa for loads ranging from 20 to 100 mN in silica-reinforced samples that are much higher than M. The micro and macro hardness is due to the reinforcement of quartz in micro silica around the gel. TGA-DTA showed that the reduction of mass loss is as high as 25.4% in control whereas 17.2% in MS5 and 15.8% in the MM5. Further, shrinkage rate in MS5 and MM5 was as low as − 1.1% and − 0.8% throughout the temperature range from 25 to 1000 °C and thus provides the way of use of nano and micro form of silica for better thermal resistance.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00176-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upcycling sugar beet waste into sustainable organo-nanocatalysis for carbon dioxide fixation and cyclic carbonate synthesis: a research design study","authors":"Fateme Moazen, Hossein Eshghi, Hossein Torabi","doi":"10.1186/s40712-024-00178-4","DOIUrl":"10.1186/s40712-024-00178-4","url":null,"abstract":"<div><p>Environmental pollution is a major global issue due to the increase of various pollutants all over the world. Enhancing pollutant remediation strategies for environmental sustainability necessitates increasing the efficiency of conventional methods or introducing innovative approaches. Nanotechnology, particularly carbon-based nanomaterials, offers substantial promise due to their high surface area and absorption potential. Concurrently, organocatalysts have emerged as sustainable and versatile alternatives to traditional metal-based catalysts in modern chemical research. This study highlights the synthesis and application of organo-nanocatalysts derived from biomass, specifically a spherical carbon nanocatalyst synthesized from sugar beet pulp. This novel green catalyst, characterized by high selectivity and efficiency, successfully converts epoxides and CO<sub>2</sub> into valuable cyclic carbonates under solvent-free conditions. The hydroxyl groups on the Sugar Beet-derived Carbon NanoSphere (SCNS) surface act as Bronsted acid sites, facilitating epoxide activation via hydrogen bonding. The integration of carbon-based nanomaterials and organocatalysis represents a promising, sustainable solution for pollutant remediation and green chemistry advancements.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00178-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142246684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Najm M. Alfrisany, Eszter Somogyi-Ganss, Laura E Tam, Benjamin D. Hatton, Rana N. S. Sodhi, Ling Yin, Grace M. De Souza
{"title":"Silica infiltration as a strategy to overcome zirconia degradation","authors":"Najm M. Alfrisany, Eszter Somogyi-Ganss, Laura E Tam, Benjamin D. Hatton, Rana N. S. Sodhi, Ling Yin, Grace M. De Souza","doi":"10.1186/s40712-024-00180-w","DOIUrl":"10.1186/s40712-024-00180-w","url":null,"abstract":"<div><p>The excellent clinical performance of yttria-partially stabilized zirconias (Y-SZs) makes them promising materials for indirect restorations. However, the Y-SZ phase stability is a concern, and infiltrating Y-SZs with a silica nanofilm may delay their degradation processes. In this study, we analyzed stabilities of silica-infiltrated zirconia surfaces after exposure to artificial aging (AA).</p><p>Four zirconia materials with different translucencies (<i>n</i> = 40) were used, including low translucency 3 mol% Y-SZ (3Y-LT, Ceramill ZI, Amann Girrbach); high translucency 4 mol% Y-SZ (4Y-HT, Ceramill Zolid); and two high translucency 5 mol% Y-SZs (5Y-HT, Lava Esthetic, 3M and 5Y-SHT, Ceramill Zolid, FX white). Sintered specimens were exposed to 40 cycles of silica (SiO<sub>2</sub>) through room temperature atomic layer deposition (RT-ALD) using tetramethoxysilane (TMOS) and ammonium hydroxide (NH<sub>4</sub>OH). AA was applied for 15 h in an autoclave (134°C, 2 bar pressure). Stabilities of zirconia-silica surfaces were characterized in terms of hardness and Young's modulus using nanoindentation techniques and crystalline contents using x-ray diffraction (XRD) analyses. Silica deposition was also characterized by X-ray photoelectron spectroscopy (XPS).</p><p>There was a significant effect of the interaction of materials and surface treatments on the hardness and Young's modulus values of zirconia-silica surfaces (<i>p</i> < 0.001). Silica deposition on zirconia surfaces improved the material resistance to degradation by AA.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00180-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening the efficacy of platinum-based nanomaterial synthesized from Allium sativum to control plant pathogens","authors":"Dhanushwr Kumar, Ranjani Soundhararajan, Hemalatha Srinivasan","doi":"10.1186/s40712-024-00165-9","DOIUrl":"10.1186/s40712-024-00165-9","url":null,"abstract":"<div><p>Emerging challenge posed by multidrug-resistant <i>Bacillus</i> spp. phytopathogens on agriculture and their commodities exerts pressure on global food security. This mandates the search for other alternatives to existing antibiotics. This study reports a novel method of green synthesis of platinum nanoparticles (PtHGNM) using aqueous extract of Himalayan garlic (<i>Allium sativum</i>). Physicochemical characterization techniques including UV-visible spectrometry, FT-IR, XRD, DLS, zeta potential, and FESEM-EDAX disclosed the biogenic fabrication of a stable and amorphic nano platinum material. This nanoparticle exhibited high bactericidal efficacy and effectively inhibited biofilm formation by the model plant-borne pathogens used in this study. We estimated the membrane integrity, oxidative enzymes and stress parameters of bacteria to elucidate the underlying mechanism of action of PtHGNM. This research uncovered the potential of biogenic nanoparticles for sustainable plant disease management and paved the way for further analysis of its properties and mechanism of its action.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00165-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}