{"title":"Evolution of bond structure and surface morphology of nitrogenated diamond-like carbon coatings during annealing","authors":"Jihua Peng, Da Peng, Guoge Zhang, Jiacheng Liao","doi":"10.1186/s40712-025-00321-9","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogenated amorphous C (a-C:N) coatings with an intermediate sp<sup>3</sup> C fraction of 30%–55% and N content of 0–5 at.% were deposited on single-crystal silicon wafer substrates via intermittent filtered cathode vacuum arc deposition. Some of the coated specimens were annealed at 300 and 600 °C for 4 h in a 5-Pa vacuum. The morphologies, microstructures, and the bonding structure of the specimens were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, and micro-Raman spectroscopy. The mechanical characteristics of the coatings, including the residual stress and hardness, were measured. Of the doped N content in the coatings, 60%–70% formed a pyridine- and pyrrole-like ring configuration of sp<sup>2</sup> C = N bonds. As the N content was increased, the fraction of pyridine-like bonds decreased, and the pyrrole-like configuration gradually became dominant. Compared to the N-free coatings, the thermally stable temperature of the nitrogenated coatings decreased to approximately 300 °C, and their surface roughness increased after annealing at 600 °C. The increase in the ratio of pyridine-like to pyrrole-like bonds (<i>R</i><sub>pyd-pyr</sub>) in the coatings increased the number of voids and pinholes in the surface layer. However, the top surface of the a-C:N coating with 3.4 at.% N annealed at 600 °C remained smooth almost without voids, which could be ascribed to its suitable <i>R</i><sub>pyd-pyr</sub> and high sp<sup>2</sup> C = C fraction.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00321-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00321-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogenated amorphous C (a-C:N) coatings with an intermediate sp3 C fraction of 30%–55% and N content of 0–5 at.% were deposited on single-crystal silicon wafer substrates via intermittent filtered cathode vacuum arc deposition. Some of the coated specimens were annealed at 300 and 600 °C for 4 h in a 5-Pa vacuum. The morphologies, microstructures, and the bonding structure of the specimens were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy, and micro-Raman spectroscopy. The mechanical characteristics of the coatings, including the residual stress and hardness, were measured. Of the doped N content in the coatings, 60%–70% formed a pyridine- and pyrrole-like ring configuration of sp2 C = N bonds. As the N content was increased, the fraction of pyridine-like bonds decreased, and the pyrrole-like configuration gradually became dominant. Compared to the N-free coatings, the thermally stable temperature of the nitrogenated coatings decreased to approximately 300 °C, and their surface roughness increased after annealing at 600 °C. The increase in the ratio of pyridine-like to pyrrole-like bonds (Rpyd-pyr) in the coatings increased the number of voids and pinholes in the surface layer. However, the top surface of the a-C:N coating with 3.4 at.% N annealed at 600 °C remained smooth almost without voids, which could be ascribed to its suitable Rpyd-pyr and high sp2 C = C fraction.