Dual-doped ZnO nanocomposites for superior photocatalytic hydrogen generation

IF 2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Abu Summama Sadavi Bilal, Muhammad Umair Ahsan Khan, Nayan Banik, Abdulla Hayitov, Rekha MM, Subhashree Ray, Kapil Ghai, Udaybir Singh, Egambergan Khudoynazarov, Muhammad Aleem, Akbar Ali Qureshi
{"title":"Dual-doped ZnO nanocomposites for superior photocatalytic hydrogen generation","authors":"Abu Summama Sadavi Bilal,&nbsp;Muhammad Umair Ahsan Khan,&nbsp;Nayan Banik,&nbsp;Abdulla Hayitov,&nbsp;Rekha MM,&nbsp;Subhashree Ray,&nbsp;Kapil Ghai,&nbsp;Udaybir Singh,&nbsp;Egambergan Khudoynazarov,&nbsp;Muhammad Aleem,&nbsp;Akbar Ali Qureshi","doi":"10.1186/s40712-025-00327-3","DOIUrl":null,"url":null,"abstract":"<div><p>The development of efficient and stable photocatalysts for hydrogen (H<sub>2</sub>) generation is crucial for sustainable energy applications. This study addresses the limitations of pristine zinc oxide (ZnO), its wide bandgap (~ 3.37 eV), and rapid charge recombination by synthesizing aluminum (Al) and cerium (Ce) co-doped ZnO nanocomposites (ACZO) via a scalable hydrothermal method. Structural and optical characterizations confirmed successful dopant incorporation, reduced crystallite size, and enhanced light absorption, with a narrowed bandgap of 2.64 eV. Further, these modifications suppress electron–hole recombination, as evidenced by a 70% reduction in photoluminescence intensity for ACZO compared to ZnO. Under simulated solar irradiation, the optimized ACZO nanocomposite achieved an H<sub>2</sub> generation rate of 1474 μmol/g.h, a 2.8-fold increase over pristine ZnO, outperforming single-doped counterparts (AZO: 1.25-fold; and CZO: 1.84-fold). The optimal catalyst dosage was determined to be 1.5 g/L, balancing dispersion and light absorption. Furthermore, ACZO exhibited excellent photostability over multiple cycles, demonstrating its potential for long-term applications. This study highlights the effectiveness of dual doping in enhancing ZnO’s photocatalytic efficiency, positioning ACZO as a promising candidate for scalable solar-driven hydrogen production.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00327-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00327-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and stable photocatalysts for hydrogen (H2) generation is crucial for sustainable energy applications. This study addresses the limitations of pristine zinc oxide (ZnO), its wide bandgap (~ 3.37 eV), and rapid charge recombination by synthesizing aluminum (Al) and cerium (Ce) co-doped ZnO nanocomposites (ACZO) via a scalable hydrothermal method. Structural and optical characterizations confirmed successful dopant incorporation, reduced crystallite size, and enhanced light absorption, with a narrowed bandgap of 2.64 eV. Further, these modifications suppress electron–hole recombination, as evidenced by a 70% reduction in photoluminescence intensity for ACZO compared to ZnO. Under simulated solar irradiation, the optimized ACZO nanocomposite achieved an H2 generation rate of 1474 μmol/g.h, a 2.8-fold increase over pristine ZnO, outperforming single-doped counterparts (AZO: 1.25-fold; and CZO: 1.84-fold). The optimal catalyst dosage was determined to be 1.5 g/L, balancing dispersion and light absorption. Furthermore, ACZO exhibited excellent photostability over multiple cycles, demonstrating its potential for long-term applications. This study highlights the effectiveness of dual doping in enhancing ZnO’s photocatalytic efficiency, positioning ACZO as a promising candidate for scalable solar-driven hydrogen production.

双掺杂ZnO纳米复合材料具有优异的光催化制氢性能
开发高效、稳定的氢生成光催化剂对可持续能源的应用至关重要。本研究通过可扩展水热法合成铝(Al)和铈(Ce)共掺杂ZnO纳米复合材料(ACZO),解决了原始氧化锌(ZnO)的局限性,其宽带隙(~ 3.37 eV)和快速电荷重组。结构和光学表征证实了成功的掺杂,减小了晶体尺寸,增强了光吸收,带隙缩小到2.64 eV。此外,这些修饰抑制了电子-空穴复合,与ZnO相比,ACZO的光致发光强度降低了70%。在模拟太阳辐照下,优化后的ACZO纳米复合材料的H2生成速率为1474 μmol/g.h,比原始ZnO提高了2.8倍,优于单掺杂ZnO (AZO: 1.25倍;CZO: 1.84倍)。催化剂的最佳用量为1.5 g/L,以平衡分散和光吸收。此外,ACZO在多个循环中表现出优异的光稳定性,证明了其长期应用的潜力。这项研究强调了双掺杂在提高ZnO光催化效率方面的有效性,将ACZO定位为可扩展的太阳能驱动制氢的有前途的候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
1
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信