{"title":"Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging","authors":"Oleksandr Tolochyn, Stepan Kyryliuk, Gennadii Bagliuk, Yurii Podrezov, Oleksandra Tolochyna","doi":"10.1007/s12289-025-01888-6","DOIUrl":"10.1007/s12289-025-01888-6","url":null,"abstract":"<div><p>A multilevel analysis of deformation and structure formation processes was carried out on powdered iron aluminide products obtained by different DPF technological schemes. At the macroscopic level, the analysis was carried out using rheological models of porous body compaction. The compaction curves are conventionally divided into three stages: at the first stage, the deformed volume decreases due to the deformation of the holder, at the second stage—due to the compaction of the porous workpiece, at the third stage—due to the plastic deformation of the dense workpiece realized due to the formation of a flake. When the compaction temperature and deformation pattern change, the staged compaction is maintained. At the meso level, the distribution of stresses and strains in the moulds and the kinetics of their changes during compaction were analysed by the finite element method. To predict the effect of structural changes on the complex of physical and mechanical properties, local processes of structure formation are analysed. It was established that the effect of porosity on electrical resistance and yield strength should be determined by the volume content of pores, consider planar pores, which are a characteristic feature of hot forging powder technology. During the strength analysis, special attention is paid to the areas around the triple joints, where defects of the maximum size are formed. The fracture toughness parameters and fracture pattern are sensitive to the presence of segregation clusters in the boundary region.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cross-scale constitutive description and deformation mechanism in cutting nickel-based superalloy Inconel718","authors":"Zhaopeng Hao, Bing Mu, Yihang Fan","doi":"10.1007/s12289-025-01886-8","DOIUrl":"10.1007/s12289-025-01886-8","url":null,"abstract":"<div><p>In the cutting process of nickel-based superalloy (Inconel718), the cutting deformation is complicated, forming sawtooth chips, and the study of its deformation mechanism has always been a hot issue in the academic circle. Numerical simulation provides an effective analytical means for in-depth understanding of the cutting process, but the current simulation methods still have some limitations in terms of cross-scale simulation ability. The dislocation evolution and deformation process in the cutting deformation of Inconel718 are still not well understood. In this paper, we propose a cross-scale material plasticity deformation simulation framework in which three-dimensional discrete dislocation dynamics (3D-DDD) coupled with base dislocation density (BDD) equations. Finite element simulations were performed by this simulation framework to study the stresses, strains, cutting forces, and temperatures during machining, as well as the microstructure evolution under different cutting conditions, such as grain size and dislocation density distribution evolution. In the process of cutting Inconel718, high-density dislocation movement and grain refinement mainly occur in the primary deformation zone and the second deformation zone, and the grain refinement degree of the machined surface is relatively weak. With the progress of cutting, the average grain size of chips is significantly smaller than that of the workpiece matrix, and the grain refinement in the chip shear zone is the most obvious. Strain rate plays a leading role in grain refinement. At the same time, due to the temperature rise, thermal softening occurs, grain deformation and dislocation accumulation in the shear zone cause cracks and holes, and accelerate the formation of sawtooth chips. Through experiments and simulation, the deformation mechanism of nickel-based superalloy is demonstrated, which further promotes the understanding of the microstructure evolution of Nickel-based superalloy during high-speed cutting.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jisik Choi, Jinwoo Lee, Hyuk Jong Bong, Myoung-Gyu Lee, Jinjin Ha, Frederic Barlat
{"title":"Bulge bottoming process for reducing springback in U-bending of 980 MPa high-strength steel","authors":"Jisik Choi, Jinwoo Lee, Hyuk Jong Bong, Myoung-Gyu Lee, Jinjin Ha, Frederic Barlat","doi":"10.1007/s12289-025-01887-7","DOIUrl":"10.1007/s12289-025-01887-7","url":null,"abstract":"<div><p>The objective of this study is to propose a bulged bottom process as a means of reducing the amount of springback from a U-shaped channel in advanced high-strength steel sheets. The recently proposed method is based on the U-bending process, but it employs modified tooling, specifically a punch head with a shallow groove and a bottom die plate with a bulgy shape. Two distinct types of steel sheets, each exhibiting an ultimate tensile strength of 980 MPa and a thickness of 1.2 mm, were subjected to investigation. The efficacy of the process in reducing springback was examined by comparing it to the springback observed in the conventional U-bending process. A finite element analysis was conducted to evaluate the proposed processing technique, considering the effects of plastic anisotropy and the elastic modulus degradation with increased plastic deformation. Furthermore, the anisotropic hardening law was employed to account for the Bauschinger effect and the associated strain hardening behavior during loading path changes. The results of the experiments and simulations were evaluated and examined to gain insight into the effect of anisotropic hardening on springback under specific loading conditions and to interpret the mechanisms of springback reduction.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of rolling force energy for thick plates based on linear yield criterion with accurate description of velocity field","authors":"Ze Jun Tang, Shun Hu Zhang, Yi Zhang","doi":"10.1007/s12289-025-01884-w","DOIUrl":"10.1007/s12289-025-01884-w","url":null,"abstract":"<div><p>For addressing the challenge of integrating the nonlinear Mises specific plasticity power, this manuscript derives the formulation of the specific plastic power based on the Double Mean approximation criterion (DM criterion). This derivation establishes the necessary conditions for integrating the internal deformation power of a thick plate. Meanwhile, a sinusoidal velocity field that satisfies the kinematically admissible conditions is formulated, and the finite element method is employed to simulate the flow behavior of the deformed metal, thereby validating the reliability of the velocity field. Based on this, the internal deformation power is determined through energy analysis of the constructed velocity field using the DM criterion, Tresca criterion, and TSS criterion. The root vector decomposition method is utilized to derive the friction power and shear power, while various criteria are employed in obtaining the analytical solutions for the rolling force using the energy method. Comparison with the existing Sims model and experimental data demonstrates that the rolling force models in accordance with the DM criterion and Tresca criterion both have errors less than 15%, and their predictive accuracy surpasses that of the Sims model. However, the TSS criterion has a prediction error greater than 25% and performs poorly. Among them, the average relative error of the rolling force and rolling torque on the basis of the DM criterion is 7.15%, and the Tresca criterion can offset the high bias brought by the upper bound method, with an average relative error of only 3.64% for rolling force and rolling torque.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel constrained ring rolling process of deep-groove rings by coordinate controlling the roller motion","authors":"Jiadong Deng, Liang Di, Tian Yuan, Dongsheng Qian, Feng Wang, Yanhua Zhang, Jian Lan","doi":"10.1007/s12289-025-01882-y","DOIUrl":"10.1007/s12289-025-01882-y","url":null,"abstract":"<div><p>Deep-groove rings are typical profiled rings which are widely used in connect flanges, casing, etc. In traditional ring rolling, the metal is easy to flow circumferentially to expand ring diameter, but it is difficult to flow axially and radially to form the irregular section contour, making it difficult to achieve near-net forming of the deep-groove ring. In this work, a novel constrained ring rolling of the deep groove ring is proposed, which can make the ring into a multi-point constrained deformation state by changing the control mode of guide roll and conical roll, limiting the circumferential metal flow ability and promoting the axial and radial metal flow ability, thus realizing the coordinated forming of the ring diameter and section profile. The evolution law of the ring geometry, metal flow deformation behavior, and the mechanical states between the roll and ring under the traditional ring rolling and constrained ring rolling were compared and analyzed by FE simulation. The influence of guide roll and conical roll motion control parameters was further studied and found that guide roll motion and conical roll speed have great influence on ring forming. Finally, a typical deep groove ring rolling experiment is carried out and the near-net rolling of deep groove ring can be realized by using the constrained ring rolling.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of upsetting technology for minimizing internal defects in heavy ingot casting: simulation, optimization, and experimental validation","authors":"Hadi Ahmadi, Shayan Dehghan, Hassan Ranjbar","doi":"10.1007/s12289-025-01883-x","DOIUrl":"10.1007/s12289-025-01883-x","url":null,"abstract":"<div><p>During the solidification of heavy ingots during casting, internal metallurgical defects are commonly observed. Despite the application of upsetting to remove internal voids in ingots, defects are often not fully eliminated by the end of the process. To address this challenge and produce upset ingots with minimal internal defects, this study introduces a novel approach. The first step involves simulating the formation of shrinkage porosity during ingot solidification and identifying the critical zone prone to internal defects. Subsequently, the study analyzes the effective strain distribution and mean stress in different sections of the critical zone using various upsetting anvil geometries. An optimized approach is then proposed, involving the shifting of the critical area to where the most significant plastic deformation is likely to occur. This is achieved through a new pin-making strategy and the selection of the best geometry for the pair of upsetting dies. To validate the model, 100CrMo7-3 heavy ingots are produced and subjected to upsetting and cogging operations using a 63MN hydraulic press. The results from ultrasonic and microscopic examinations indicate that the proposed method leads to fewer internal imperfections. Additionally, a comparison between numerical and experimental results demonstrates good agreement, resulting in a reduced risk of remaining internal shrinkage porosities after upsetting large-scale ingots.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ala’aldin Alafaghani, Riccardo Puleo, Lillian Adams, Pingsha Dong, Daniel Cooper
{"title":"A study on internal quenching of hollow extrusions to reduce distortion and increase the energy to failure of aluminum profiles","authors":"Ala’aldin Alafaghani, Riccardo Puleo, Lillian Adams, Pingsha Dong, Daniel Cooper","doi":"10.1007/s12289-025-01881-z","DOIUrl":"10.1007/s12289-025-01881-z","url":null,"abstract":"<div><p>Lightweight automotive extrusions are increasingly complex, thin-walled, multi-hollow profiles made from quench-sensitive alloys like AA6082. These profiles require rapid (water) quenching as they leave the press in preparation for age-hardening. Conventional rapid quenching, which only directly cools the profile’s extremity, can distort the part. Lower quenching rates reduce distortion but may compromise the mechanical properties. We test three hypotheses: (1) That the different cooling rates across the section during quenching induce varying mechanical properties as well as distortion; (2) That this temperature differential can be minimized by combining novel internal profile quenching with conventional quenching; and (3) That internal quenching can be achieved using insulated channels in the extrusion die to convey the quenchant to the profile’s interior. The first hypothesis is tested experimentally by taking tensile specimens from a AA6082 multi-hollow profile. The second is examined experimentally using a lab-built quench box and theoretically using thermo-mechanical finite element simulations. The third hypothesis is tested by conducting a hollow profile extrusion trial using a specially designed porthole die. The testing shows that conventional quenching results in reduced mechanical properties in the profile’s internal walls but that combined external/internal quenching alleviates this problem and reduces distortion. The extrusion trial on internal quenching demonstrates die survivability, an acceptable die temperature drop during quenchant flow, and effective quenchant disposal via evaporation and capture of liquid at the end of the profile. This study suggests that internal quenching is a promising technology option for reducing scrap and improving mechanical properties of hard-to-quench aluminum profiles.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143481275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical anisotropic hardening extension of a differential hardening yield function for strength modelling under various stress states with non-associated flow rule by a new linear transformation tensor","authors":"Chong Zhang, Chao Niu, Yanshan Lou, Jeong Whan Yoon, Liucheng Zhou, Xiaoqing Liang","doi":"10.1007/s12289-025-01877-9","DOIUrl":"10.1007/s12289-025-01877-9","url":null,"abstract":"<div><p>The general <span>({I}_{1}{J}_{2}{J}_{3})</span> yield function (Lou et al. in Int J Plast 158:103414, 33) is extended to an analytically anisotropic form by using a newly proposed five-parameter linear transformation tensor based on the work of Barlat et al. Int J Plast 7:693–712, 7). The anisotropic parameters are analytically calculated so that the proposed yield function can model both differential hardening at various stress states and anisotropic hardening along different loading directions. The extended anisotropic form is applied to characterize the strain hardening behavior of metals of three different polycrystal structures, including AA7075 T6 aluminium, QP1180 steel, and AZ31 magnesium. The results show that the extended anisotropic form is capable of precisely modelling both the differential and anisotropic hardening for the studied metals under various stress states. The proposed function is also applied to a high strength steel QP980 (Hou et al. J Mater Process Technol 290:116979, 17) to validate the capability of the proposed model for the modeling of strength differential (SD) effect between uniaxial tension and compression and its evolution with respect to plastic strain. The results show that the proposed function is capable of predicting the SD effect between uniaxial tension and compression with very high accuracy along RD, DD and TD. Convexity analysis is conducted during yield surface evolution by a newly proposed geometry-inspired numerical convex analysis method to ensure the yield surface convexity during significant change of yield surfaces.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of the shrinkage defects of high ribs in extrusion processes with plane strain characteristics","authors":"Jian Lan, Xiaolong Wu, Lin Hua, Cheng Yu","doi":"10.1007/s12289-025-01880-0","DOIUrl":"10.1007/s12289-025-01880-0","url":null,"abstract":"<div><p>Aluminum alloy forged wheel hubs are lightweight materials for electric vehicles. However, forming high-ribbed spokes is challenging due to potential shrinkage during high rib extrusion with plane strain characteristics. This study utilizes the finite element method to analyze the high-rib extrusion process with plane-strain characteristics. It is found that a region of tensile stress exists near the bottom fillet of the rib persisting until the high rib contour is fully filled. The position and size of this region remain largely unchanged during extrusion. Defining the occurrence of shrinkage defects as a critical state, the thickness is defined as the critical residual thickness. By constructing a stress state slip line field for plane-strain extrusion, a prediction formula for the critical residual thickness of high-rib extrusion is proposed. The proposed critical residual thickness is evaluated through finite element calculations and high-rib extrusion experiments. The results show that the critical residual thickness is linearly positively correlated with the half-width of the rib root and negatively correlated with the fillet radius of the rib root, taper angle, and shear friction coefficient. The initial blank thickness does not affect the critical residual thickness. The depth of the shrinkage increases linearly with the decrease in residual thickness. The experimental critical residual thickness can be determined by combining finite element calculations and extrusion experiments. The proposed theoretical formula for the critical residual thickness has an error of + 8.14% compared to the experimental critical residual thickness. This theoretical prediction is relatively conservative and can guide the design of high-rib extrusion forming billets to ensure defect-free high-rib forming.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Beygelzimer, O. Davydenko, Y. Beygelzimer, Y. Tereshchenko, V. Bondarchuk, V. Shyvaniuk, R. Fataiev, I. Shapiro, V. Balakin, N. Biba, D. Orlov
{"title":"Local High Pressure Torsion: a process for creating targeted heterogeneities in metallic materials","authors":"E. Beygelzimer, O. Davydenko, Y. Beygelzimer, Y. Tereshchenko, V. Bondarchuk, V. Shyvaniuk, R. Fataiev, I. Shapiro, V. Balakin, N. Biba, D. Orlov","doi":"10.1007/s12289-025-01879-7","DOIUrl":"10.1007/s12289-025-01879-7","url":null,"abstract":"<div><p>In the light of recent developments in the design of structural materials, micro-architected heterogenous-structure metals are considered among most structurally efficient. In this work, a new technique for Local High Pressure Torsion (L-HPT) enabling the creation of heterogeneous structures through localised deformation processing in sheet metals by impeding a rotating punch is proposed. Using AA5083 aluminium alloy as an example, we show experimentally that the rotation of the punch sets adjacent material layers in motion. This results in more than two-fold increase in material hardness over initial level in the workpiece bulk with rather sharp gradients in hardness level transition. The maximum hardness is observed at the peripheral edge of a punch tip. Finite-element modelling of the L-HPT process confirmed that the rotational flow of workpiece material leads to the accumulation of shear strain. The level of accumulated strain increases with an increase in friction at the contact surface. Further analysis based on dimensionality theory revealed that for such an L-HPT configuration the level of equivalent strain is directly proportional to the ratio of rotation-to-translation speeds at the punch.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-025-01879-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}