Jisik Choi, Jinwoo Lee, Hyuk Jong Bong, Myoung-Gyu Lee, Jinjin Ha, Frederic Barlat
{"title":"Bulge bottoming process for reducing springback in U-bending of 980 MPa high-strength steel","authors":"Jisik Choi, Jinwoo Lee, Hyuk Jong Bong, Myoung-Gyu Lee, Jinjin Ha, Frederic Barlat","doi":"10.1007/s12289-025-01887-7","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to propose a bulged bottom process as a means of reducing the amount of springback from a U-shaped channel in advanced high-strength steel sheets. The recently proposed method is based on the U-bending process, but it employs modified tooling, specifically a punch head with a shallow groove and a bottom die plate with a bulgy shape. Two distinct types of steel sheets, each exhibiting an ultimate tensile strength of 980 MPa and a thickness of 1.2 mm, were subjected to investigation. The efficacy of the process in reducing springback was examined by comparing it to the springback observed in the conventional U-bending process. A finite element analysis was conducted to evaluate the proposed processing technique, considering the effects of plastic anisotropy and the elastic modulus degradation with increased plastic deformation. Furthermore, the anisotropic hardening law was employed to account for the Bauschinger effect and the associated strain hardening behavior during loading path changes. The results of the experiments and simulations were evaluated and examined to gain insight into the effect of anisotropic hardening on springback under specific loading conditions and to interpret the mechanisms of springback reduction.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01887-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to propose a bulged bottom process as a means of reducing the amount of springback from a U-shaped channel in advanced high-strength steel sheets. The recently proposed method is based on the U-bending process, but it employs modified tooling, specifically a punch head with a shallow groove and a bottom die plate with a bulgy shape. Two distinct types of steel sheets, each exhibiting an ultimate tensile strength of 980 MPa and a thickness of 1.2 mm, were subjected to investigation. The efficacy of the process in reducing springback was examined by comparing it to the springback observed in the conventional U-bending process. A finite element analysis was conducted to evaluate the proposed processing technique, considering the effects of plastic anisotropy and the elastic modulus degradation with increased plastic deformation. Furthermore, the anisotropic hardening law was employed to account for the Bauschinger effect and the associated strain hardening behavior during loading path changes. The results of the experiments and simulations were evaluated and examined to gain insight into the effect of anisotropic hardening on springback under specific loading conditions and to interpret the mechanisms of springback reduction.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.