Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Oleksandr Tolochyn, Stepan Kyryliuk, Gennadii Bagliuk, Yurii Podrezov, Oleksandra Tolochyna
{"title":"Multilevel analysis of deformation and structure formation processes in powdered iron aluminide products obtained by different technological schemes of direct powder forging","authors":"Oleksandr Tolochyn,&nbsp;Stepan Kyryliuk,&nbsp;Gennadii Bagliuk,&nbsp;Yurii Podrezov,&nbsp;Oleksandra Tolochyna","doi":"10.1007/s12289-025-01888-6","DOIUrl":null,"url":null,"abstract":"<div><p>A multilevel analysis of deformation and structure formation processes was carried out on powdered iron aluminide products obtained by different DPF technological schemes. At the macroscopic level, the analysis was carried out using rheological models of porous body compaction. The compaction curves are conventionally divided into three stages: at the first stage, the deformed volume decreases due to the deformation of the holder, at the second stage—due to the compaction of the porous workpiece, at the third stage—due to the plastic deformation of the dense workpiece realized due to the formation of a flake. When the compaction temperature and deformation pattern change, the staged compaction is maintained. At the meso level, the distribution of stresses and strains in the moulds and the kinetics of their changes during compaction were analysed by the finite element method. To predict the effect of structural changes on the complex of physical and mechanical properties, local processes of structure formation are analysed. It was established that the effect of porosity on electrical resistance and yield strength should be determined by the volume content of pores, consider planar pores, which are a characteristic feature of hot forging powder technology. During the strength analysis, special attention is paid to the areas around the triple joints, where defects of the maximum size are formed. The fracture toughness parameters and fracture pattern are sensitive to the presence of segregation clusters in the boundary region.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01888-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

A multilevel analysis of deformation and structure formation processes was carried out on powdered iron aluminide products obtained by different DPF technological schemes. At the macroscopic level, the analysis was carried out using rheological models of porous body compaction. The compaction curves are conventionally divided into three stages: at the first stage, the deformed volume decreases due to the deformation of the holder, at the second stage—due to the compaction of the porous workpiece, at the third stage—due to the plastic deformation of the dense workpiece realized due to the formation of a flake. When the compaction temperature and deformation pattern change, the staged compaction is maintained. At the meso level, the distribution of stresses and strains in the moulds and the kinetics of their changes during compaction were analysed by the finite element method. To predict the effect of structural changes on the complex of physical and mechanical properties, local processes of structure formation are analysed. It was established that the effect of porosity on electrical resistance and yield strength should be determined by the volume content of pores, consider planar pores, which are a characteristic feature of hot forging powder technology. During the strength analysis, special attention is paid to the areas around the triple joints, where defects of the maximum size are formed. The fracture toughness parameters and fracture pattern are sensitive to the presence of segregation clusters in the boundary region.

Abstract Image

对不同粉末直接锻造工艺方案下铝化铁粉末制品的变形和组织形成过程进行了多层次分析
对不同工艺方案制备的铝化铁粉末制品的变形和结构形成过程进行了多层次分析。在宏观层面上,采用多孔体压实流变模型进行分析。压实曲线通常分为三个阶段:在第一阶段,由于夹具的变形,变形体积减小;在第二阶段,由于多孔工件的压实;在第三阶段,由于片状的形成,致密工件实现了塑性变形。当压实温度和变形模式发生变化时,保持阶段压实。在细观水平上,用有限元方法分析了应力和应变在模具中的分布及其在压实过程中的变化动力学。为了预测结构变化对复合材料物理力学性能的影响,分析了结构形成的局部过程。提出了孔隙率对电阻和屈服强度的影响应由孔隙的体积含量决定,并考虑了平面孔隙是热锻粉工艺的一个特征。在强度分析中,特别注意了三接头周围的区域,在那里形成了最大尺寸的缺陷。断裂韧性参数和断裂模式对边界区偏析团簇的存在非常敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信