Enhancement of upsetting technology for minimizing internal defects in heavy ingot casting: simulation, optimization, and experimental validation

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Hadi Ahmadi, Shayan Dehghan, Hassan Ranjbar
{"title":"Enhancement of upsetting technology for minimizing internal defects in heavy ingot casting: simulation, optimization, and experimental validation","authors":"Hadi Ahmadi,&nbsp;Shayan Dehghan,&nbsp;Hassan Ranjbar","doi":"10.1007/s12289-025-01883-x","DOIUrl":null,"url":null,"abstract":"<div><p>During the solidification of heavy ingots during casting, internal metallurgical defects are commonly observed. Despite the application of upsetting to remove internal voids in ingots, defects are often not fully eliminated by the end of the process. To address this challenge and produce upset ingots with minimal internal defects, this study introduces a novel approach. The first step involves simulating the formation of shrinkage porosity during ingot solidification and identifying the critical zone prone to internal defects. Subsequently, the study analyzes the effective strain distribution and mean stress in different sections of the critical zone using various upsetting anvil geometries. An optimized approach is then proposed, involving the shifting of the critical area to where the most significant plastic deformation is likely to occur. This is achieved through a new pin-making strategy and the selection of the best geometry for the pair of upsetting dies. To validate the model, 100CrMo7-3 heavy ingots are produced and subjected to upsetting and cogging operations using a 63MN hydraulic press. The results from ultrasonic and microscopic examinations indicate that the proposed method leads to fewer internal imperfections. Additionally, a comparison between numerical and experimental results demonstrates good agreement, resulting in a reduced risk of remaining internal shrinkage porosities after upsetting large-scale ingots.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01883-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

During the solidification of heavy ingots during casting, internal metallurgical defects are commonly observed. Despite the application of upsetting to remove internal voids in ingots, defects are often not fully eliminated by the end of the process. To address this challenge and produce upset ingots with minimal internal defects, this study introduces a novel approach. The first step involves simulating the formation of shrinkage porosity during ingot solidification and identifying the critical zone prone to internal defects. Subsequently, the study analyzes the effective strain distribution and mean stress in different sections of the critical zone using various upsetting anvil geometries. An optimized approach is then proposed, involving the shifting of the critical area to where the most significant plastic deformation is likely to occur. This is achieved through a new pin-making strategy and the selection of the best geometry for the pair of upsetting dies. To validate the model, 100CrMo7-3 heavy ingots are produced and subjected to upsetting and cogging operations using a 63MN hydraulic press. The results from ultrasonic and microscopic examinations indicate that the proposed method leads to fewer internal imperfections. Additionally, a comparison between numerical and experimental results demonstrates good agreement, resulting in a reduced risk of remaining internal shrinkage porosities after upsetting large-scale ingots.

Abstract Image

改进镦粗技术以减少重型铸锭铸造中的内部缺陷:模拟、优化和实验验证
在大型铸锭铸造凝固过程中,经常观察到内部冶金缺陷。尽管采用镦粗来消除铸锭内部的空洞,但在工艺结束时,缺陷往往不能完全消除。为了解决这一挑战并生产具有最小内部缺陷的镦粗锭,本研究引入了一种新方法。第一步是模拟铸锭凝固过程中缩孔的形成,确定容易产生内部缺陷的临界区域。在此基础上,分析了不同镦粗砧几何形状下临界区不同断面的有效应变分布和平均应力。然后提出了一种优化方法,包括将关键区域转移到可能发生最显著塑性变形的地方。这是通过新的销制策略和对镦粗模具的最佳几何形状的选择来实现的。为了验证该模型,使用63MN液压机生产了100CrMo7-3重型铸锭,并进行了镦粗和开槽操作。超声和显微检查结果表明,所提出的方法可以减少内部缺陷。此外,数值结果与实验结果的比较表明,结果吻合较好,从而降低了大型铸锭镦粗后残余内部收缩孔隙率的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信