{"title":"基于平面应变特性的高肋挤压收缩缺陷研究","authors":"Jian Lan, Xiaolong Wu, Lin Hua, Cheng Yu","doi":"10.1007/s12289-025-01880-0","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum alloy forged wheel hubs are lightweight materials for electric vehicles. However, forming high-ribbed spokes is challenging due to potential shrinkage during high rib extrusion with plane strain characteristics. This study utilizes the finite element method to analyze the high-rib extrusion process with plane-strain characteristics. It is found that a region of tensile stress exists near the bottom fillet of the rib persisting until the high rib contour is fully filled. The position and size of this region remain largely unchanged during extrusion. Defining the occurrence of shrinkage defects as a critical state, the thickness is defined as the critical residual thickness. By constructing a stress state slip line field for plane-strain extrusion, a prediction formula for the critical residual thickness of high-rib extrusion is proposed. The proposed critical residual thickness is evaluated through finite element calculations and high-rib extrusion experiments. The results show that the critical residual thickness is linearly positively correlated with the half-width of the rib root and negatively correlated with the fillet radius of the rib root, taper angle, and shear friction coefficient. The initial blank thickness does not affect the critical residual thickness. The depth of the shrinkage increases linearly with the decrease in residual thickness. The experimental critical residual thickness can be determined by combining finite element calculations and extrusion experiments. The proposed theoretical formula for the critical residual thickness has an error of + 8.14% compared to the experimental critical residual thickness. This theoretical prediction is relatively conservative and can guide the design of high-rib extrusion forming billets to ensure defect-free high-rib forming.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the shrinkage defects of high ribs in extrusion processes with plane strain characteristics\",\"authors\":\"Jian Lan, Xiaolong Wu, Lin Hua, Cheng Yu\",\"doi\":\"10.1007/s12289-025-01880-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminum alloy forged wheel hubs are lightweight materials for electric vehicles. However, forming high-ribbed spokes is challenging due to potential shrinkage during high rib extrusion with plane strain characteristics. This study utilizes the finite element method to analyze the high-rib extrusion process with plane-strain characteristics. It is found that a region of tensile stress exists near the bottom fillet of the rib persisting until the high rib contour is fully filled. The position and size of this region remain largely unchanged during extrusion. Defining the occurrence of shrinkage defects as a critical state, the thickness is defined as the critical residual thickness. By constructing a stress state slip line field for plane-strain extrusion, a prediction formula for the critical residual thickness of high-rib extrusion is proposed. The proposed critical residual thickness is evaluated through finite element calculations and high-rib extrusion experiments. The results show that the critical residual thickness is linearly positively correlated with the half-width of the rib root and negatively correlated with the fillet radius of the rib root, taper angle, and shear friction coefficient. The initial blank thickness does not affect the critical residual thickness. The depth of the shrinkage increases linearly with the decrease in residual thickness. The experimental critical residual thickness can be determined by combining finite element calculations and extrusion experiments. The proposed theoretical formula for the critical residual thickness has an error of + 8.14% compared to the experimental critical residual thickness. This theoretical prediction is relatively conservative and can guide the design of high-rib extrusion forming billets to ensure defect-free high-rib forming.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01880-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01880-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Investigation of the shrinkage defects of high ribs in extrusion processes with plane strain characteristics
Aluminum alloy forged wheel hubs are lightweight materials for electric vehicles. However, forming high-ribbed spokes is challenging due to potential shrinkage during high rib extrusion with plane strain characteristics. This study utilizes the finite element method to analyze the high-rib extrusion process with plane-strain characteristics. It is found that a region of tensile stress exists near the bottom fillet of the rib persisting until the high rib contour is fully filled. The position and size of this region remain largely unchanged during extrusion. Defining the occurrence of shrinkage defects as a critical state, the thickness is defined as the critical residual thickness. By constructing a stress state slip line field for plane-strain extrusion, a prediction formula for the critical residual thickness of high-rib extrusion is proposed. The proposed critical residual thickness is evaluated through finite element calculations and high-rib extrusion experiments. The results show that the critical residual thickness is linearly positively correlated with the half-width of the rib root and negatively correlated with the fillet radius of the rib root, taper angle, and shear friction coefficient. The initial blank thickness does not affect the critical residual thickness. The depth of the shrinkage increases linearly with the decrease in residual thickness. The experimental critical residual thickness can be determined by combining finite element calculations and extrusion experiments. The proposed theoretical formula for the critical residual thickness has an error of + 8.14% compared to the experimental critical residual thickness. This theoretical prediction is relatively conservative and can guide the design of high-rib extrusion forming billets to ensure defect-free high-rib forming.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.